ISSN : 0974 - 7435

Volume 10 Issue 2

FULL PAPER BTAIJ, 10(2), 2014 [243-247]

Homomorphism and isomorphism of hilbert algebras in BCK-algebra

Zhang Qiuna^{1*}, Yan Yan¹, Zhao Yingna¹, Zhao Wenjing² ¹Hebei United University, Tangshan 063009, Hebei, (CHINA) ²Qinggong College, Hebei United University, Tangshan 063000, Hebei, (CHINA) E-mail: 853474933@qq.com; Zhangqiuna1980@163.com

Abstract

The notion of BCK-algebras was formulated first in 1966 by K. Iséki Japanese Mathematician. In this paper we will discuss Homomorphism and Isomorphism Hilbert Algebras in BCK-algebras and its proposition. © 2014 Trade Science Inc. - INDIA

KEYWORDS

BCK-algebra; Hilbert algebras; Homomorphism; Isomorphism.

INTRODUCTION

BCK-algebra is originated from two different ways. One of the motivation is based on set theory, another motivation is from classical and non-classical propositional calculi. Here we will discuss Homomorphism and Isomorphism Hilbert Algebras in BCK-algebras and its proposition.

DEFINITION OF HOMOMORPHISM AND ISOMORPHISM

Definition

Suppose $(H; \rightarrow, 1)$ and $(H'; \rightarrow', 1')$ are two Hilbert Algebras in BCK-algebras. A mapping $f : H \rightarrow H'$ is called a homomorphism from H into H', if for any $x, y \in H$,

 $f(y \rightarrow x) = f(y) \rightarrow f(x)$.

Definition

Suppose $(H; \rightarrow, 1)$ and $(H'; \rightarrow', 1')$ are two Hilbert Algebras in BCK-algebras. A mapping $f : H \rightarrow H'$ is called a homomorphism from H into H', if for a n y $x, y \in H$, $f(y \to x) = f(y) \to f(x)$, and f(H) = H', $F(H) = \{f(x) : x \in H\}$, then f is called an epimorphism. If f both epimorphism and oneto-one, then f is called isomorphism.

In case H = H' a homomorphism is called an endomorphism and an isomorphism is referred as an automorphism.

The set of all homomorphism from H into H' is denoted by Hom(H, H'), usually $Hom(H, H') \neq \phi$, because it contains the one homomorphism: 1: $H \rightarrow H'$.

For any $f \in Hom(H, H')$, and any empty subset $H_1 \subseteq H$, the set

 $f^{-1}(H_1) = \{x \in H : f(x) \in H_1\}$

Called the inverse image of H_1 under f.

In particular, $f^{-1}(\{1'\})$ is called the kernel of f.

Note $f^{-1}(\{1'\}) = \{x \in H : f(x) = 1'\}$.

Full Paper

Theorem

Suppose $f : H \to H'$ is a homomorphism, then (1) f(1) = 1',

(2) f is isotone.

Proof

B e c a u s e $f(1) = f(1 \rightarrow 1) = f(1) \rightarrow f(1) = 1' \rightarrow 1' = 1'$, (1) holds.

If $x, y \in H$, and $x \le y$, then $y \to x = 1$, by(1) $\mathbf{f}(\mathbf{y} \to \mathbf{x}) = \mathbf{f}(\mathbf{y}) \to \mathbf{f}(\mathbf{x}) = \mathbf{f}(1) = \mathbf{1}'$, hence $f(x) \le f(y)$, proving(2).

Theorem

Suppose $(H; \rightarrow, 1)$ and $(H'; \rightarrow', 1')$ are two Hilbert Algebras in BCK-algebras. Let H'_1 be an ideal of H', then for any $f \in Hom(H, H')$, $f^{-1}(H'_1)$ is an ideal of H.

Proof

By theorem 1.1(1), $1 \in f^{-1}(H'_1)$. Assume that $y \to x \in f^{-1}(H'_1)$, and $y \in f^{-1}(H'_1)$, then $\mathbf{f}(\mathbf{y}) \to \mathbf{f}(\mathbf{x}) = \mathbf{f}(\mathbf{y} \to \mathbf{x}) \in \mathbf{f}^{-1}(\mathbf{H}'_1)$, $\mathbf{f}(\mathbf{y}) \in \mathbf{f}^{-1}(\mathbf{H}'_1)$.

It follows that $f(x) \in H'_1$, so $x \in f^{-1}(H'_1)$. This say that $f^{-1}(H'_1)$ is an ideal of H.

Since $\{1'\}$ is an ideal of H', we have

Theorem

Ker(f) is an ideal of H.

Definition

Suppose *H* is a Hilbert Algebras in BCK-algebras, a proper ideal H_1 of *H* is called obstinate, if for any $x, y \in H$, $x, y \notin H_1$, implies $y \to x \in H_1$, $x \to y \in H_1$.

Theorem

Suppose H is a Hilbert Algebras in BCK-algebras, H_1 is an ideal of H, the following are equivalent:

(1) H_1 is obstinate,

BioTechnology An Indian Journal

- (2) H_1 is positive implicative and maximal,
- (3) H_1 is implicative and maximal.

Theorem

Suppose H is a Hilbert Algebras in BCK-algebras,

 H_1 is an ideal of H, the following are equivalent:

- (1) H_1 is obstinate,
- (2) H_1 is maximal,
- (3) H_1 is Prime
- (4) H_1 is irreducible.

Theorem

Suppose H and H_1 are two Hilbert Algebras in BCK-algebras, H_1 is a proper ideal of H, then for any Hilbert Algebras in BCK-algebras H' there exists $f \in Hom(H, H')$ such that $Ker(f) = H_1$ if and only if H_1 is obstinate.

Proof

Suppose H_1 is obstinate, we define

$$\mathbf{f}(\mathbf{x}) = \begin{cases} \mathbf{1'} & \mathbf{x} \in \mathbf{H}_1 \\ \mathbf{a} & \mathbf{x} \in \mathbf{H} - \mathbf{H}_1 \end{cases}$$

where *a* is any fixed element of H_1 , and $a \neq 1'$, In order to $f \in Hom(H, H')$.

If $x, y \in H_1$, then $y \to x \in H_1$ as $y \to x \le x$, hence $f(y \to x) = 1'$. On the other hand $f(y) \to f(x) = 1' \to 1' = 1'$,

Therefore $f(y \rightarrow x) = f(y) \rightarrow' f(x)$.

If $x, y \notin H_1$, then $y \to x \in H_1$, because H_1 is obstinate, and so $f(y \to x) = 1'$. On the other hand $f(y) \to f(x) = a \to a \to a = 1'$,

It follows that $f(y \rightarrow x) = f(y) \rightarrow' f(x)$.

If
$$x \notin H_1$$
, $y \in H_1$, then $y \to x \notin H_1$, and so

 $f(y \rightarrow x) = a = 1' \rightarrow' a = f(y) \rightarrow' f(x)$.

If $x \in H_1$, $y \notin H_1$, then $y \to x \in H_1$ as $y \to x \le x$, hence

 $f(y \rightarrow x) = 1' = a \rightarrow '1' = f(y) \rightarrow 'f(x)$.

📼 Full Paper

Summarizing all the above we know $f \in Hom(H, H')$, and $Ker(f) = f^{-1}(1') = H_1$.

Conversely, suppose that for any Hilbert Algebras in BCK-algebras $(H'; \rightarrow', 1')$, there exists

 $f \in Hom(H, H')$ such that $Ker(f) = H_1$.

Assume $H' = \{1', a\}$, in which \rightarrow is given by

 $\mathbf{1'} \rightarrow \mathbf{a} = \mathbf{a}$, $\mathbf{a} \rightarrow \mathbf{a} = \mathbf{a} \rightarrow \mathbf{1'} = \mathbf{1'} \rightarrow \mathbf{1'} = \mathbf{1'}$.

then $(H'; \rightarrow, l')$ is a Hilbert Algebras in implicative BCK-algebras.

By the hypothesis there exists $f \in Hom(H, H')$ such that $Ker(f) = H_1$, then

 $f^{-1}(a) = H - H' \, .$

any $x, y \in H - H'$,

have f(x) = f(y) = a.

so

For

$$\begin{split} f(y \rightarrow x) &= f(y) \rightarrow' f(x) = a \rightarrow' a = 1', \\ f(x \rightarrow y) &= f(x) \rightarrow' f(y) = a \rightarrow' a = 1' \end{split}$$

This shows that $y \to x \in H_1$, $x \to y \in H_1$, hence H_1 is obstinate.

Theorem

Suppose X, Y, Z are three Hilbert Algebras in BCK-algebras, let $h: X \to Y$ be an epimorphism and $g \in Hom(X, Z)$. If $Ker(h) \subseteq Ker(g)$, then there exists a unique homomorphism $f: Y \to Z$ such that $f \bullet h = g$.

Proof

For any
$$y \in Y$$
, there is $x \in X$, such that $y = h(x)$
For x , put $z = g(x)$,
 $y = h(x_1) = h(x_2), x_1, x_2 \in X$, then
 $h(x_2 \rightarrow x_1) = h(x_2) \rightarrow h(x_1) = 1$,
so $x_2 \rightarrow x_1 \in Ker(h)$.

S i n c e $Ker(h) \subseteq Ker(g)$ then $1 = g(x_2 \rightarrow x_1) = g(x_2) \rightarrow g(x_1)$.

Similarly, we obtain $g(x_1) \rightarrow g(x_2) = 1$, therefore $g(x_1) = g(x_2)$, this show that *f* is well-defined, and y = h(x), z = g(x) and $f : y \mapsto z$, imply g(x) = f(h(x)).

Let $y_1, y_2 \in Y$, for any $x_1, x_2 \in X$, such that $y_1 = f(x_1)$ and $y_2 = f(x_2)$. We have $f(y_2 \rightarrow y_1) = f(h(x_2) \rightarrow h(x_1))$ $= f(h(x_2 \rightarrow x_1))$ $= g(x_2 \rightarrow x_1)$ $= g(x_2) \rightarrow g(x_1)$ $= f(h(x_2)) \rightarrow f(h(x_1))$ $= f(y_2) \rightarrow f(y_1)$ Hence $f \in Hom(Y, Z)$.

HOMOMORPHISM THEOREM

Definition

we

Suppose *H* and *H*₁ are two Hilbert Algebras in BCK-algebras, then there exists an epimorphism $f: H \to H'$, then we call *H* to be homomorphic to *H*₁, written $H \sim H'$; if there exists an isomorphism $f: H \to H'$, then we call *H* to be isomorphic to *H*₁, written $H \cong H'$.

Propositions

- (1) $H \cong H$,
- (2) If $H \cong H'$, then $H' \cong H$,
- (3) If $H_1 \cong H_2$ and $H_2 \cong H_3$, then $H_1 \cong H_3$.

Theorem

Suppose *H* is a Hilbert Algebras in BCK-algebras, if H_1 is an ideal of *H*, then the quotient algebra H/H' is a homomorphic image of.

Proof

Let $f: H \to H/H'$, because H/H' = f(H). then $H \sim H/H'$.

Theorem

(Homomorphism Theorem)Suppose H and H_1 are two Hilbert Algebras in BCK-algebras, if $f : H \to H'$ is

BioTechnology An Indian Journal

Full Paper 🛥

an epimorphism then $H / Ker(f) \cong H_1$.

Proof

Because Ker(f) is an ideal of H, then H / Ker(f)is a Hilbert Algebras in BCK-algebras, and $C_1 = Ker(f)$.

Assume μ : $H / Ker(f) \rightarrow H$ and $\mu(C_x) = f(x)$. In the following we proof that μ is an isomorphism.

If
$$C_x = C_y$$
, then $y \to x, x \to y \in Ker(f)$, so
 $\mathbf{f}(\mathbf{y} \to \mathbf{x}) = \mathbf{f}(\mathbf{x} \to \mathbf{y}) = \mathbf{1}$,
 $\mathbf{f}(\mathbf{y}) \to \mathbf{f}(\mathbf{x}) = \mathbf{f}(\mathbf{x}) \to \mathbf{f}(\mathbf{y}) = \mathbf{1}$.
By BCI-4we

have f(x) = f(y) and $\mu(C_x) = \mu(C_y)$. This shows that μ is a mapping from H / Ker(f) to H'.

For any $y \in H'$, there is $x \in H$, such that y = f(x), so

 $\mu(\mathbf{C}_{\mathbf{x}}) = \mathbf{f}(\mathbf{x}) = \mathbf{y} ,$

hence $\mu: H / Ker(f) \rightarrow H$.

If $C_x \neq C_y$, then x, y do not belong to the same equivalent class. Thus $x \to y \notin Ker(f)$ or $y \to x \notin Ker(f)$.

Suppose $y \to x \notin Ker(f)$, then

 $f(y) \rightarrow f(x) = f(y \rightarrow x) \neq 1$.

So $f(x) \neq f(y)$. This says that μ is one-to-one.Since

$$\begin{split} & \mu(\mathbf{C}_{\mathbf{y}} \rightarrow \mathbf{C}_{\mathbf{x}}) = \mu(\mathbf{C}_{\mathbf{y} \rightarrow \mathbf{x}}) = \mathbf{f}(\mathbf{y} \rightarrow \mathbf{x}) \\ & = \mathbf{f}(\mathbf{y}) \rightarrow \mathbf{f}(\mathbf{x}) = \mu(\mathbf{C}_{\mathbf{y}}) \rightarrow \mu(\mathbf{C}_{\mathbf{x}}) \end{split}$$

so μ is a homomorphism, putting the above facts together we know that μ is an isomorphism from H/Ker(f) to H'.

Theorem

If $f : H \to H'$ is an epimorphism, then the following are equivalent:

- (1) *Ker*(*f*) is a commutative(positive implicative, implicative) ideal,
- (2) {1} is a commutative (positive implicative, implica-

tive) ideal of H',

(3) H' is a Hilbert Algebras in commutative(positive implicative, implicative) BCK-algebras.

Proof

(2) \Leftrightarrow (3) Because Ker(f) is a commutative ideal of H is equivalent to H / Ker(f) being a Hilbert Algebras in commutative BCK-algebras. Suing Homomorphism Theorem we obtain $H / Ker(f) \cong H'$, and so (1) \cong (3).

Theorem

If $f : H \to H'$ is an epimorphism, if H is bounded (commutative, positive implicative, implicative), then so is H'.

Proof

If *H* is bounded (commutative, positive implicative, implicative), then so is H/Ker(f). Since $H/Ker(f) \cong H'$, by Homomorphism Theorem, *H'* is bounded (commutative, positive implicative, implicative).

Theorem

If $f : H \to H'$ is an epimorphism, and H_2 is an ideal of H', then $H/H_1 \cong H'/H_2$ and $H_1 = f^{-1}(H_2)$. **Proof**

The natural homomorphism from H' to H'/H_2 is denoted by v, then $\mu = v \bullet f$ is an

Epimorphism from H to H'/H_2 , we now prove $Ker(\mu) = f^{-1}(H_2)$.

For
$$\operatorname{Ker}(\mu) = f^{-1}(H_2)$$
.
any $x \in H$,

then $\mu(x) = (v \bullet f)(x) = v(f(x)) = C_{f(x)}$.

where $C_{f(x)}$ is the equivalent class containing f(x) in H'/H_2 . Suppose $y \in f^{-1}(H_2)$,

then $f(y) \in H_2$, so $C_{f(y)} = H_2$. This says $\mu(y) = H_2$, hence $y \in Ker(\mu)$, thus we obtain $f^{-1}(H_2) \subseteq Ker(\mu)$.

247

Let $x \in Ker(\mu)$, then $\mu(x) = H_2$. Combining $\mu(x) = C_{f(x)}$, we have $C_{f(x)} = H_2$. It follows that $f(x) \in H_2$, and so $x \in f^{-1}(H_2)$. This means that

$$f^{-1}(H_2) \supseteq Ker(\mu).$$

Therefore $f^{-1}(H_2) = Ker(\mu)$. by Homomorphism Theorem

$$H / Ker(\mu) \cong H' / H$$

Hence $H/H_1 \cong H'/H_2$.

Theorem

If $f: H \to H'$ is an epimorphism and $R \in \mathfrak{R}(H)$.

If $Ker(f) \subseteq R$, then $f^{-1}(f(R)) = R$.

Proof

Obviously $R \subseteq f^{-1}(f(R))$. Assume $x \subseteq f^{-1}(f(R))$,

then $f(x) \in f(R)$. Thus there is $y \in R$, such that f(x) = f(y), so

 $f(y \rightarrow x) = f(y) \rightarrow f(x) = 1$

Hence $\mathbf{y} \rightarrow \mathbf{x} \in \operatorname{Ker}(\mathbf{f}) \subseteq \mathbf{R}$.

Noticing that $R \in \mathfrak{R}(H)$, then $x \in R$. There-

fore $f^{-1}(f(R)) \subseteq R$, hence $f^{-1}(f(R)) = R$.

Theorem

Suppose *H* is a Hilbert Algebras in BCKalgebras, H_1, H_2 are two ideal of *H* and $H_2 \subseteq H_1$, let $v: H \to H/H_2$ and

 $\mu: H/H_2 \rightarrow (H/H_2)/(H_1/H_2)$ be natural homomorphism, then

 $H/H_1 \cong (H/H_2)/(H_1/H_2)$.

Proof

Let $f = \mu \bullet f$, then f is an epimorphism

from H to $(H/H_2)/(H_1/H_2)$. Hence

 $H/Ker(f) \cong (H/H_2)/(H_1/H_2)$.

Since

 $Ker(f) = \{x \in H : f(x) = H_1 / H_2\},\$

so $Ker(f) = f^{-1}(f(H_1)) = H_1$.

REFERENCES

- [1] Zhang Qiuna; An Ideal of Hilbert Algebras in BCKalgebras.[J]. Proceedings of 2009 conference on communication faculty, 310-311 (**2009**).
- [2] Zhang Qiuna; Negative Implicative BCK-algebras. Proceedings of Annual Conference of China Institute of Communications, 273-176.
- [3] Zhang Qiuna; Double Stone Algebra's Ideal and Congruence Ideal. Proceedings of Annual Conference of China Institute of Communications, 277-279.
- [4] Zhang Qiuna; Fuzzy Ideal of Hilbert Algebras in BCK-algebras. ISVC, (2011).
- [5] Zhang Qiuna. Study of attribute resolution stage's reduce arithmetic, Internationl Conference on Test and Measurement, 145-151 (2009).
- [6] Ma xinghua; Evaluation Analysis of University Student Scholarship, Internationl Conference on Test and Measurement, 152-155 (2009).
- [7] Li Dongmei; A Comparative Study of Some Rational Interpolation Algorithms and its Application, Internationl Conference on Test and Measurement, 152-155 (2009).
- [8] Zhang Qiuna; Relationships between some Ideals of Hilbert Algebras in BCK-algebras. ISVC (2011).
- [9] Y.B.Jun; Fuzzy commutative ideal of BCKalgebras[J]. Fuzzy Sets and Systems, 63, 1-26 (1994).
- [10] Jie Meng; On Ideals in BCK-algebras[J]. Math Japan, 1, 143-154 (1994).

BioTechnology An Indian Journal