High-performance thin-layer chromatographic method for quantification of \(\beta \)-sitosterol from *Tridax procumbens*

Shaikh Shamshul S.*, K.V.Mangaonkar
Analytical Chemistry Laboratory, Mithibai College of Arts, Chauhan Institute of Science & Amrutben Jivanlal College of Commerce and Economics. Vile Parle (W), Mumbai - 400 056, (INDIA)
E-mail : shamshul26@gmail.com; kmangaonkar@indiatimes.com
Received: 26th February, 2010 ; Accepted: 8th March, 2010

KEYWORDS
HPTLC; \(\beta \)-sitosterol; *Tridax Procumbens*; Anisaldehyde sulphuric acid reagent.

ABSTRACT
A simple, precise, accurate and reproducible high-performance thin layer chromatographic method has been established for quantification of \(\beta \)-sitosterol in whole plant powder of *Tridax Procumbens*. The amount of \(\beta \)-sitosterol in whole plant powder of *Tridax Procumbens* was found to be 0.04%. A methanolic extract of the whole plant powder was used for the experimental work. Separation was performed on aluminium sheet silica gel 60 F\textsubscript{254} HPTLC plates with Toluene: Ethyl acetate: Glacial acetic acid 8.0:2.0:0.2 (v/v), as solvent system. After development, plates were treated with Anisaldehyde Sulphuric Acid reagent. Detection and quantification were performed by densitometer at \(\lambda = 550 \text{nm} \). \(\beta \)-sitosterol response was linear over the range 10.0 \(\mu \text{g/ml} \) to 70.0 \(\mu \text{g/ml} \). The validated HPTLC method can be used for a routine quality-control analysis of *Tridax Procumbens* whole plant powder and quantification of \(\beta \)-sitosterol.

INTRODUCTION
Plant material or its extracts contains a complex mixture of different components and it is necessary to separate them before quantification. *Tridax Procumbens* commonly called as Mexican daisy is a semi-prostrate perennial herb belonging to family Asteraceae, growing wild in plains throughout India. It exhibits several pharmacological activities like used to stop bleeding, diarrhoea, malaria, stomachache, pacifies vitiated pitta, inflammation, ulcers, anal fistula, and hemorrhoids, while its anti-diabetic, anti-hepatotoxic and anti-oxidant properties are recently revealed\[^1\]. Reported chemical constituents in *Tridax Procumbens* are Sigmasterol and \(\beta \)-Sitosterol.

The literature reveals that there is no high-performance thin-layer chromatographic method available for quantification of \(\beta \)-sitosterol in whole plant powder of *Tridax Procumbens*. A simple, rapid, economical, precise, and accurate HPTLC method has been established for determination of \(\beta \)-sitosterol in *Tridax Procumbens* whole plant powder.

EXPERIMENTAL
Reagents and materials
Analytical grade Toluene, Ethyl acetate, Glacial Acetic Acid and Methanol were obtained from Qualigens Fine Chemicals, Mumbai, India. Standard \(\beta \)-sitosterol were procured from Sigma-Aldrich. The structure of
β-sitosterol is shown in figure 1.

The plant *Tridax Procumbens* were collected from Bhandup (Mumbai), India and were authenticated by the National Botanical Research Institute (NBRI), Council of Scientific and Industrial Research, Lucknow, India.

Standard and sample preparation

Stock solution of β-sitosterol (1000 µg mL⁻¹) was prepared by dissolving 10.310 mg of 97.00% pure compound, transferring to a 10 mL volumetric flask, dissolving in minimum quantity of methanol and diluting volume to the mark with the same solvent. Aliquots (0.1 mL to 0.7 mL) of this stock solution were transferred to 10 mL volumetric flasks and the volume of each was made up to 10 mL with methanol, to obtain working standard solutions containing 10 µg mL⁻¹ to 70 µg mL⁻¹.

Tridax Procumbens plant were collected, washed, dried in the shade, powdered, and the powder was passed through an BSS 80-mesh sieve and stored in an airtight container at 25°C. 1.0 g of dried plant powder was accurately weighed and placed in a stoppered tubes and 10 mL of methanol was added, the samples were vortexed for 1-2 min and left to stand overnight at room temperature (28 ± 2°C). The contents of the tubes were filtered through Whatman No. 41 paper (E. Merck, Mumbai, India). The clear supernatants were collected in dry volumetric flask. This 0.1 mg/mL solution of plant powder was used for the assay of β-sitosterol.

Instruments

A Camag Linomat IV sample applicator was used for sample application. Camag Twin trough glass chamber (20 × 10 cm) was used for development of plates. Camag TLC scanner II equipped with cats 3 Version software was used for interpretation of data.

Chromatography Procedure

Chromatography was performed on aluminium-backed HPTLC plates precoated with 0.2 mm layers of silica gel 60 F254 (Merck # 5554); prewashing of plates was carried out using methanol and plates were dried in oven for 15 minutes. Samples (10 µL) were applied on the plates as bands of 8 mm width with the help of a Camag Linomat IV automatic sample applicator at the distance of 10 mm from the bottom edge of the plates.

For β-sitosterol, plate was developed, at 25 ± 2°C, with Toluene: Ethyl acetate: Glacial acetic acid in the ratio 8.0:2.0:0.2 (v/v/v) as mobile phase in a Camag (Muttenz, Switzerland) glass twin- trough chamber, previously equilibrated with mobile phase for 15 minutes. The development distance was 8.0 cm. After development, the plate was dried at room temperature and derivatized with Anisaldehyde sulphuric acid reagent in a derivatization chamber for 20 secs and again dried at room temperature. After drying, the plate was heated in oven at 105°C for 10 min before densitometric scanning.

The chromatographic conditions had previously been optimized to achieve the best resolution and peak shape for β-sitosterol. The plates were scanned at λ = 550 nm by means of Camag TLC Scanner and CATS3 software. A typical HPTLC chromatogram of β-sitosterol and plant is shown in figure 2. The chromatographic plate of β-sitosterol standard and *Tridax Procumbens* plant powder is shown in figure 3.

Table 1: Linearity data for β-sitosterol

<table>
<thead>
<tr>
<th>Data</th>
<th>β-sitosterol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linearity range</td>
<td>10 to 70</td>
</tr>
<tr>
<td>Slope (m)*</td>
<td>27.235</td>
</tr>
<tr>
<td>Intercept (c)*</td>
<td>-155.076</td>
</tr>
<tr>
<td>Correlation coefficient (R)</td>
<td>0.999</td>
</tr>
<tr>
<td>LOD µg mL⁻¹</td>
<td>5</td>
</tr>
<tr>
<td>LOQ µg mL⁻¹</td>
<td>10</td>
</tr>
<tr>
<td>Instrument Precision (RSD[%], n = 10)</td>
<td>1.06</td>
</tr>
<tr>
<td>Intraday Precision (RSD[%], n = 3)</td>
<td>0.16</td>
</tr>
<tr>
<td>Interday Precision (RSD[%], n = 3)</td>
<td>0.14</td>
</tr>
</tbody>
</table>

Of the equation y = mx + c, where y is peak area, m is the slope, x is the concentration and c is the intercept
Linearity of detector response

β-sitosterol solutions at seven different concentrations (10, 20, 30, 40, 50, 60 and 70 μg mL⁻¹) were prepared in methanol. The above β-sitosterol solutions (10 μL) were applied to HPTLC plates. The plates were developed as per the chromatographic condition mention in 2.4.1. The detector response for the different concentrations were measured. Graph were plotted of standard peak area against concentration of β-sitosterol. The plot was linear in the range 10 to 70 μg mL⁻¹ for β-sitosterol. The experiments were performed three times and the mean was used for the calculations. The linearity data is given in TABLE 1.

Assay

10 μL of the standard solution of β-sitosterol (40 μg mL⁻¹) and sample solutions were spotted on a HPTLC plate. The amount of β-sitosterol present in this solution was calculated by comparison of area measured for the sample to that for the standard. The assay procedures described earlier were repeated seven times starting from weighing of the whole plant powder. The amount of β-sitosterol found in plant powder of Tridax Procumbens was 0.04 % respectively.

Accuracy

The accuracy of the methods was established by performing recovery experiments by the standard addition method. The recovery of standard β-sitosterol added to Tridax Procumbens plant powder was studied at three different levels, each being analysed in a manner similar to that described for the assay. The contents of β-sitosterol were quantified by the proposed methods and the percentage recovery was calculated.

RESULTS AND DISCUSSION

Of the different mobile phases investigated, Toluene: Ethyl acetate: Glacial acetic acid in the ratio 8.0:2.0:0.2 (v/v/v), resolved β-sitosterol (Rf = 0.40) very efficiently from the other components of the methanolic extract of Tridax Procumbens. The response of β-sitosterol was found to be linearly dependent on concentration in the range 10 μg mL⁻¹ to 70 μg mL⁻¹, with correlation coefficient of 0.999.

The variability of the methods was studied by analyzing aliquots of the different concentrations of β-sitosterol solutions on the same day (intra-day precision) and on different days (inter-day precision) and by instrument precision. The results were expressed as % RSD. The % RSD values were found to be less than 2%, indicating that the selected method is precise and reproducible. The mean recovery of β-sitosterol was found to 98.28 % which indicates the accuracy of the methods.

The robustness of the methods was studied, during method development, by determining the effects of small variation, of mobile phase composition (±2%), duration of plate pre-washing, chamber saturation period, development distance and scanning time (10% variation of each). No significant change in Rf or in response...
of β-sitosterol was observed, indicating the robustness of the methods.

CONCLUSION

The proposed method is simple, rapid, precise, accurate and economic and can be used for routine quality-control analysis of *Tridax Procumbens* plant powder and for quantitative determination of β-sitosterol from plant powder.

REFERENCES

