ISSN : 0974 - 7486

Volume 12 Issue 1

Materials

Science An Indian Journal FUII Paper

MSAIJ, 12(1), 2015 [005-009]

High k of $Ba(Sm_{1/2}Ta_{1/2})O_3$ Perovskite with the addition of cation

L.Abdul Khalam

Department of Physics, Iqbal College, Peringammala, Thruvananthapuram-695563, Kerala, (INDIA)

ABSTRACT

Double perovskite type $Ba(Sm_{1/2}Ta_{1/2})O_3$ ceramic was prepared in the conventional ceramic route. Dielectric properties were determined with the addition of dopants such as Nb_2O_5 , CuO, ZnO, MgO and TiO₂. Addition of MgO and ZnO increased the quality factor of the ceramic to a great extent, while the τ_f could be tuned to nearly zero value with the addition of CuO and TiO₂. Addition of TiO2 increased the dielectric constant of $Ba(Sm_{1/2}Ta_{1/2})O_3$ ceramic to a high k group. © 2015 Trade Science Inc. - INDIA

KEYWORDS

Dielectric resonators; Microwaves; Complex perovskites; Cations.

INTRODUCTION

Microwave communication industry is experiencing a remarkable change after the development of ceramic materials that could be used as dielectric resonators and filters to store and transfer microwave communication signals^[1,2]. Prominent DR materials family reported in the literature are the complex perovskites of 1:2 ordered type $A(B_{1/3}B_{2/3}^{2})O_{3}$ and 1:1 ordered type $A(B_{1/2}B'_{1/2})$ O3-- ceramics^[4-11]. Dielectric properties of complex perovskites can be tuned by suitable substitutions at A or B sites.^[3,4,5-7] Among the 1:2 type ordered ceramics Ba(Zn_{1/3}Ta_{2/3})O₃ and Ba(Mg_{1/3}Ta_{2/} $_{3}$)O₃ were found to have high quality factor and low temperature coefficient of resonant frequency[8-10]. Addition of CuO, NaF, B₂O₃ and PbO-B₂O₃-SiO₂ glasses[11-14] enhance the liquid phase sintering. In this report, the variation in the dielectric properties of $Ba(Sm_{1/2}Ta_{1/2})O_3$ ceramic with the addition of different dopants were studied.

EXPERIMENTAL

Perovskite type $Ba(Sm_{1/2}Ta_{1/2})O_3$ ceramic was pre-

pared in the conventional ceramic route. High purity BaCO₃ (99.9%, Aldrich Chemicals), Ta₂O₅ (99.9%, Nuclear Fuel Complex), and rare earth oxides (99.9%, Indian Rare Earths) were weighed in the stoichiometric ratio 4:1:1 and ball milled using zirconium balls in distilled water medium for 24 hours. The slurries were dried and calcined at 1375°C for 4 hours. The addition of binder and powder compaction were carried. The obtained compounds were sintered in air at 1575°C, for 4 hours. Addition of different dopants in 0-5 wt.% were added to Ba(Sm_{1/2}Ta_{1/2})O₃ ceramic and sintered at 1625°C. The bulk densities of the sintered samples were measured by Archimedes method. Well-polished samples were used for all the measurements.

RESULTS AND DISCUSSION

Calcination and sintering temperatures of Ba(Sm_{1/2}Ta_{1/2})O₃ ceramics were optimized as 1375°C/4h and 1575°C/4h for better dielectric properties. The cell parameters were calculated by indexing Ba(Sm_{1/2}Ta_{1/2})O₃ as tetragonal structure. X-ray diffraction pattern of Ba(Sm_{1/2}Ta_{1/2})O₃ ceramic is shown in Figure 1. The

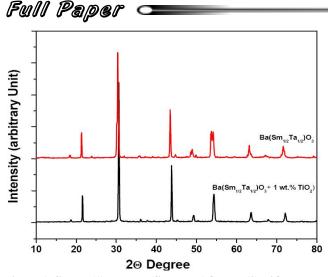


Figure 1: Shows (1) pure $Ba(Sm_{1/2}Ta_{1/2})O_3$ and (2) TiO₂ added $Ba(Sm_{1/2}Ta_{1/2})O_3$ ceramic

dielectric responses of the Ba $(Sm_{1/2}Ta_{1/2})O_3$ ceramic sample was measured in the range 4 to 6 GHz range and are shown in TABLE 1. Different valence dopants such as Nb₂O₅, CuO, ZnO, MgO and TiO₂ in 0-5 wt% were added separately to $Ba(Sm_{1/2}Ta_{1/2})O_3$ ceramics. Figure 2 shows the variations in the dielectric properties of $Ba(Sm_{1/2}Ta_{1/2})O_3$ ceramics with the addition of 0-5 wt.% of different valence dopants at the same sintering temperature (1575°C/4h). The ionic radii of Bsite elements in the Ba($Sm_{1/2}Ta_{1/2}$)O₃ ceramic are r_{Sm} = $0.958 \text{ ú}, r_{T_{2}} = 0.64 \text{ ú}$ and the average ionic radius of Sm and Ta is 0.799 ú. Dopant addition changed the dielectric properties of Ba(Sm_{1/2}Ta_{1/2})O₃ ceramic. Dielectric properties of $Ba(Sm_{1/2}Ta_{1/2})O_3$ has been improved with the dopants independent of their valency. Thus the divalent dopants such as MgO, CuO, ZnO; tetravalent dopants such as TiO_{2} ; and pentavalent dopants such as Nb₂O₅ appreciably changed the Q-factor, ε_r and τ_f of Ba(Sm_{1/2}Ta_{1/2})O₃ ceramics. The variation of ε_r with these dopants is in the range 36.6-38.2. Further addition of TiO₂ increases the ε_r of Ba(Sm_{1/2}Ta_{1/2})O₃ whereas Q-factor decreases. Figure 2a shows the variation of $Q_{\mu} \times f$ of Ba $(Sm_{1/2}Ta_{1/2})O_3$ ceramics with 0-5 wt.% addition of dopants. TiO₂ addition steeply decreases the Q-factor of Ba($Sm_{1/2}Ta_{1/2}$)O₃ ceramics. Quality factor of $Ba(Sm_{1/2}Ta_{1/2})O_3$ ceramics showed an increase with a small amount of Nb₂O₅ and CuO and then decreased with further additions as shown in Figure 2a. The additions of MgO and ZnO in 0-5 wt.% showed a trend of increase in Q-factor of $Ba(Sm_{12}Ta_{12})$ $_{2}$)O₃ ceramic though the relative densities of the samples were decreased to nearly 95% of the theoretical den-

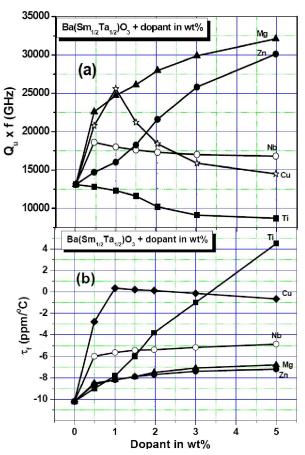


Figure 2 : Shows the variation in (a) Q-factor and (b) τ_{f} of Ba(Sm_{1/2}Ta_{1/2})O₃ ceramic with the addition of dopants in different wt.%.

sity. With the rise in sintering temperature of Ba(Sm_{1/2}Ta_{1/2})O₃ ceramics by 25°C per each 1 wt.% addition of MgO and ZnO, the Q-factor of the samples have been increased appreciably as shown. Additional peaks of Ba(Mg_{1/3}Ta_{2/3})O₃ and Ba(Zn_{1/3}Ta_{2/3})O₃ phases were observed in the XRD pattern of MgO and ZnO added samples (Figure 3). Increase in Q-factor with the addition of MgO and ZnO may be due to the formation of Ba(Mg_{1/3}Ta_{2/3})O₃ and Ba(Zn_{1/3}Ta_{2/3})O₃ phases along with Ba(Sm_{1/2}Ta_{1/2})O₃.

The variation of τ_f of Ba(Sm_{1/2}Ta_{1/2})O₃ ceramics with the addition of dopants in 0-5 wt.% is shown in Figure 2b. Ba(Sm_{1/2}Ta_{1/2})O₃ ceramic shows a shift in τ_f towards the +ve value with TiO₂ addition. The steep variations in the dielectric properties with the addition of TiO₂ may be due to the TiO₂ secondary phase in the Ba(Sm_{1/2}Ta_{1/2})O₃ ceramic. Similar behaviours with TiO₂ additions were reported for Sr(B'_{1/2}Ta_{1/2})O₃ and Ca(B'_{1/2}Nb_{1/2})O₃ ceramics. 1 wt.% addition of CuO decreased the $|\tau_f|$ of Ba(Sm_{1/2}Ta_{1/2})O₃ ceramic to zero

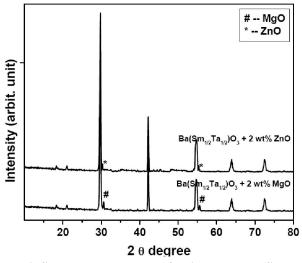


Figure 3: Shows the XRD peaks of cation added $Ba(Sm_{1/2}Ta_{1/2})O_3$ ceramic.

value and then again increased to -ve value with further additions. 0.5 wt.% addition of Nb₂O₅ lowered the τ_{f} to -3 ppm/°C and remains nearly steady value with further additions. MgO and ZnO additions to $Ba(Sm_{1/2}Ta_{1/2})$ ₂)O₃ ceramic showed an improvement in τ_{f} to -7 ppm/ ^oC with 0.5 wt.% addition and it remains nearly a constant with further additions. These investigations indicate that, the improvement in the dielectric properties of $Ba(Sm_{1/2}Ta_{1/2})O_3$ ceramics is more dependent of the dopant's ionic size than their valency. The improvement in dielectric properties of Ba(Sm_{1/2}Ta_{1/2})O₃ ceramic with up to 1 wt.% CuO addition was due to the liquid phase sintering. More addition of CuO lowered the dielectric properties of Ba(Sm_{1/2}Ta_{1/2})O₃ ceramic due to the liquid phase formation with CuO. Addition of more TiO, appreciably increased the ε_r value and hence Ba(Sm_{1/} $_{2}Ta_{1/2}$)O₃ ceramic approaches the high k group.

A combined (1:1 combination) effect of these dopants in 0-6 wt.% were also tried to study the variations in the dielectric properties of Ba(Sm_{1/2}Ta_{1/2})O₃ ceramic. These ceramics were sintered at 1600°C/4h. Ba(Sm_{1/2}Ta_{1/2})O₃ ceramic has obtained a maximum ε_r of 37.5 with the addition of 1 wt.% of Nb₂O₅ + CuO and then it was decreased with the further additions. Similarly, MgO + CuO and ZnO + CuO combinations showed slight increase in ε_r with 1 wt.% addition as shown in Figure 4a. The Q-factors of Ba(Sm_{1/2}Ta_{1/2})O₃ with MgO + CuO (1:1 ratio) and ZnO + CuO (1:1 ratio) have increased linearly up to 1 wt.% addition and then decreased with further additions. Nb₂O₅ + CuO also slightly increased the Q-factor of Ba(Sm_{1/2}Ta_{1/2})O₃

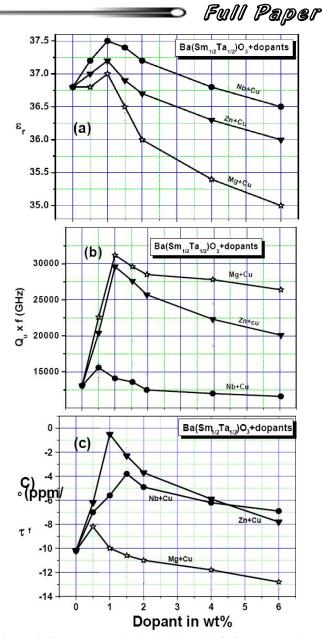


Figure 4: Shows the variation in (a) ε_r (b) Q-factor and (c) τ_f of Ba(Sm_{1/2}Ta_{1/2})O₃ ceramic with the addition of multiple dopants in different wt.%.

ceramics up to 0.5 wt.% addition and then decreased with further additions as shown in Figure 4b. The decrease in Q-factors of CuO added samples may be due to the liquid phase formation with the melted CuO.

Figure 4c shows the variation of τ_{f} of Ba(Sm_{1/2}Ta_{1/2})O₃ ceramics with the addition of dopants in the ratio 1:1. Additions of 1 wt.% of ZnO + CuO and Nb₂O₅ + CuO lowered the τ_{f} of Ba(Sm_{1/2}Ta_{1/2})O₃ ceramic to close to zero value (-0.5 ppm/°C and -3.5 ppm/°C). 1 wt.% addition of MgO + CuO also lowered the τ_{f} of Ba(Sm_{1/2}Ta_{1/2})O₃ ceramic to -8.2 ppm/°C. Any addi-

Full Paper

tion of TiO₂ to any combination of dopants results decrease in Q-factor, increase in ε_r value and shifts the τ_{f} to positive side due to the unreacted TiO₂ phase in the Ba(Sm_{1/2}Ta_{1/2})O₃ ceramic.

Effect of dopant (rutile-TiO₂) on Ba(Sm_{1/2}Ta_{1/2})O₃ ceramics

Generally Ba based double perovskites have -ve $\tau_{f_1}^{[15-18]}$. The TiO₂ has high dielectric constant, large positive τ_{f} and has size ($r_{Ti} = 0.645$ Å) and charge ($z_{Ti} =$ 4⁺) close to the average of Sm³⁺ and Ta⁵⁺. Hence small wt% of TiO₂ was added to B-site of $Ba(Sm_{1/2}Ta_{1/2})O_3$ ceramics to tune ε_r and τ_f . Ba(Sm_{1/2}Ta_{1/2})O₃ ceramics has $\varepsilon_r = 37.6$, Q_u x f = 13100 GHz and $\tau_f = -10.2$ ppm/ °C while TiO₂ has ε_r H" 100, Q₁ x f H" 45000 GHz and τ_{f} H" 400 ppm/°C. Ba(Sm_{1/2}Ta_{1/2})O₃ + x wt.% TiO₂ ceramics for x = 0 to 10 were sintered at 1600-1300°C for 4 hours. The sintering temperatures of the compounds decreases by 25°C with each 1 wt.% addition of TiO₂. XRD pattern of Ba($Sm_{1/2}Ta_{1/2}$)O₃ ceramics with and without the addition of TiO₂ is shown in Figure 1. The tetragonal splitting in the reflection peaks have disappeared and instead sharp peaks of cubic structure appeared with the addition of TiO₂. With the addition of 1 wt.% TiO_2 , the difference between the lattice parameters a and b has found decreased and the tetragonal structure transformed to pseudo cubic. Density of the ceramic has increased with a small amount (up to 0.5 wt.%) of TiO₂ addition. Addition of more wt.% of TiO₂ decreases the density of the ceramic but increases the ε_r with TiO₂ content as shown in TABLE 1. Rutile has lower density H"4 g/cm³. Addition of 0.5 wt.% TiO₂ has not affected the Q-factor (13000 GHz) of Ba(Sm_{1/2}Ta_{1/2})O₃ ceramic. Improvements in ε_r and τ_{f} with the addition of TiO₂ to La_{2/3}(Mg_{1/2}W_{1/2})O₃ was reported by Bian et al.¹⁹. More than 0.5 wt.% TiO₂ addition to Ba($Sm_{1/2}Ta_{1/2}$)O₃ ceramics decreased the density and Q-factor while increased the ε_r value steeply (shows in Figure 5). The continuous increase in ε_{r} with more addition of TiO_2 is due to the unreacted TiO2content in the Ba($Sm_{1/2}Ta_{1/2}$)O₃ ceramic. This type of temperature stable and high k materials opens a window to high k group. The variations in the dielectric properties of Ba($Sm_{1/2}Ta_{1/2}$)O₃ ceramic with the addition of 0-10 wt.% of TiO₂ at 1600-1300°C/4 h are shown in TABLE 1.

Materials Science An Indian Journal

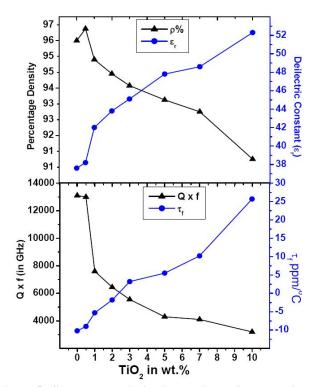


Figure 5 : Shows the variation in the dielectric properties of $Ba(Sm_{1/2}Ta_{1/2})O_3$ ceramic with the addition of TiO_2 in different wt.%

TABLE 1: Shows the dielectric properties of $Ba(Sm_{1/2}Ta_{1/2})O_3$ ceramic with cation addition

Dopant (0.5 wt.%)	r _{dopant} (Å)	%ρ	٤r	Q _u x f (GHz)	τ _f (ppm/°C)
Pure Ba($Sm_{1/2}Ta_{1/2}$)O ₃		96.00	37.60	13100	-10.20
+0.5 wt%Nb ₂ O ₅	0.64	95.4	37.67	16000	-7.2
+ 0.5 wt% MgO	0.72	95.5	36.60	24000	-7.7
+0.5 wt% CuO	0.73	95.9	36.81	17350	0.0
+0.5 wt% ZnO	0.74	97.5	37.20	16850	-8.4
+0.5 wt% TiO2	0.645	96.5	38.20	13000	-9.0
$+ 1.0 \text{ wt\% TiO}_2$	"	95.2	42.00	7600	-5.3
$+ 2.0 \text{ wt\% TiO}_2$	"	94.6	43.80	6450	-1.8
$+ 3.0 \text{ wt\% TiO}_2$	"	94.1	45.10	5560	3.2
+5.0 wt% TiO ₂	دد	93.5	47.80	4300	5.5
+7.0 wt% TiO ₂	"	93.0	48.60	4100	10.2
+ 10.0 wt% TiO ₂	"	91.0	52.30	3200	25.7

CONCLUSIONS

The quality factor of Ba(Sm_{1/2}Ta_{1/2})O₃ ceramic was increased with the addition of MgO, CuO, ZnO, and Nb₂O₅ separately. But the dielectric constant was least affected by them. τ_{f} of the ceramic could be

9

tuned to nearly zero value with a small amount of CuO and TiO₂ and then τ_f was shifted to positive value with further addition of TiO₂. The dielectric properties of Ba(Sm_{1/2}Ta_{1/2})O₃ ceramic was increased with a 1:1 combination of Mg & Cu, ZnO & CuO and Nb₂O₅ & CuO up to 1 wt.% addition and then the dielectric properties were deteriorated with further additions. This effect of increase in Dielectric constant of the material with the addition of TiO₂ can add the material in to high k group.

ACKNOWLEDGEMENT

It is very grateful to UGC for the financial aid under Minor Research Project.

REFERENCES

- A.S.Bhalla, R.Guo, R.Roy; Mater. Res. Innovat., 4, 3 (2000).
- [2] W.Wersing; Curr.Opin.Solid State Mater.Sci., 1, 715 (1996).
- [3] D.Cruickshank; J.Eur.Ceram.Soc., 23, 2721 (2003).
- [4] M.T.Sebastian, K.P.Surendran; J.Eur.Ceram.Soc., 26, 1791 (2005).
- [5] R.Ratheesh, M.T.Sebastian, M.E.Tobar, J.Hartnett, D.G.Blair; J.Phys.D:Appl.Phys., 32, 2821 (1999).
- [6] F.S.Galasso; Structure, Properties and Preparation of Perovskite Type Compounds 1st Edition, Pergamon Press, Headington Hill Hall, Oxford, 11, (1969).
- [7] M.Takata, K.Kageyama; J.Am.Ceram.Soc., 72, 1955 (1989).

- [8] Y.Doi, Y.Hinatsu; J.Phys.Condens.Matter., 13, 4191 (2001).
- [9] E.L.Colla, I.M.Reaney, N.Setter; J.Appl.Phys., 74, 3414 (1993).
- [10] S.Nomura, Y.Konishi; Low Loss Microwave Dielectric (tanalate) material. US 4, 487, 842 (1984).
- [11] H.Sreemooanadhan, Johny Isaac, K.A.Jose, P.Mohanan, M.T.Sebastian; Ceramics International, 21, 385 (1995).
- [12] K.P.Surendran, M.T.Sebastian, P.Mohanan, M.V.Jacob; J.Appl.Phys., 98, 1 (2005).
- [13] M.R.Varma, R.Resmi, M.T.Sebastian; Jpn.J.Appl.Phys., 44, 298 (2005).
- [14] M.T.Sebastian, N.Mc.N.Alford; website on DR materials, F.S.Galasso: Structure, Properties and Preparation of Perovskite Type Compounds, 1st Edition, (Pergamon Press, Headington Hill Hall, Oxford, 1969), **11**, (**1969**).
- [15] M.Takata, K.Kageyama; Microwave characteristics of $A(B_{1/2}^{3+}B_{1/2}^{5+})O_3$ ceramics, J.Am.Ceram.Soc., **72**, 1955-59 (**1989**).
- [16] R.Zurmuhlen, E.Colla, D.C.Dube, J.Petzelt, I.M.Reaney, A.Bell, N.Setter; Structure of $Ba(Y_{1/2}^{+3}Ta_{1/2}^{+5})O_3$ and its dielectric properties in the range 10^2-10^{14} Hz, 20-600 K, J.Appl.Phys., **76**, 5864-73 (1994).
- [17] I.M.Reaney, E.Colla, N.Setter; Dielectric and structural characteristics of Ba- and Sr-based complex perovskites as a function of tolerance factor, Jpn.J.Appl, Phys., 33, 3984-3990 (1994).
- [18] K.P.Surendran, M.T.Sebastian, P.Mohanan, R.L.Moreira, A.Dias; Effect of Nonstoichiometry on the Structure and Microwave Dielectric Properties of Ba(Mg_{1/3}Ta_{2/3})O₃, Chem. Mater., **17**, 142-151 (**2005**).

