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ABSTRACT
In this paper, a hybrid finite time variable structure controller(HFTVSC)
guaranteeing the system global stability and finite time convergence for
uncertain nonholonomic systems with affine kinematic constraints is
proposed. Making use of the elementary transformation This paper
proposes a global variable structure relay control scheme with finite time
convergence for the nonholonomic control systems with affine kinematic
constraints by the dynamical model of the nonholonomic control systems
with affine kinematic constraints(ACK),The chattering can be eliminated
since the proposed terminal sliding mode controller doesn�t include
switching item.  2013 Trade Science Inc. - INDIA
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INTRODUCTION

There is a great number of research results which
has been produced in studies on the dynamical models
of nonholonomic control systems. I. Kolmanovsk et al.
studied a class of nonholonomic control systems in ex-
tended power form. Wang et al. proposed a stable
motion tracking control law for mechanical systems sub-
ject to both nonholonomic and holonomic constraints,
developed a control law at the dynamic level and can
deal with model uncertainties, and the proposed con-
trol law ensured the desired trajectory tracking of the
configuration state of the closed-loop system. A large
class of nonlinear systems, such as a space robot with
an initial angular momentum, a coin or a ball on a rotat-
ing table, a pneumatic tire, underactuated manipulators
and underwater vehicles and so on, which are affine in
velocities. As we know, there have been much less re-
search results on the nonholonomic control systems with

affine kinematic constraints than those on the
nonholonomic control systems with linear constraints
has been produced in the control of nonholonomic con-
trol systems with linear constraints due to the demand
for control of the referred systems. The controller prob-
lem of the nonholonomic control systems with affine
kinematic constraints still has no paper to investigate it
so far.

Motivated by Wu, in section 3, we propose a glo-
bal variable structure relay control scheme with finite
time convergence, and give a design approach for finite
time tracking control by using a relay control method
so that the boundedness of the control signal is guaran-
teed and the singularity phenomenon is avoided for the
nonholonomic control systems with affine constraints.

SYSTEM MODEL

A mechanical system whose state is defined by gen-
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eralized coordinates 1 2( , , , )T
nq q q q   and veloci-

ties q   1 2( , , , )T
nq q q    which evolve in a smooth n -

dimensional manifold with constraints restricting the
motion of the system to a smooth m -dimensional mani-

fold represented locally as a ( ) ( )TJ q q A q , where  is

the number of coordinates,  m is the number of con-

straint equations,  ( ) n mJ q R 
 ,  ( ) mA q R  .

By the property of full rank matrix, thus there exist

matrices  
1 2, , , rP P P , such that

  1 2 1 2( ) ( ) ( )T
rJ q PP P J q J q , where  n n

kP R 

is the matrix produced by exchanging row  i  and row

 j  of the identity matrix,  1( ) m mJ q R 
  is nonsingular..

Defining,  1 2
n n

rN PP P R 
   ,

 1
1 2

1

( ) ( )
( )

J q J q
S q N

I

 
  

 

where   ( ) ( )
1

n m n mI R   
  is an identity matrix. It is easy

to see that  ( )S q  is of full rank also, then we can easy

deduce the following relation:  ( ) ( ) 0TJ q S q  . and

there exists a full rank matrix   ( )
1( ) n m nS q R    by the

property of full rank matrix, which satisfies

 
1( ) ( ) 0S q S q  .

Now, we define

1 1
1 2 1

( 1) ( 1)
1 1

2

0

0 1

n n m

J J J A

E I R

 

   

 
 

   
  

,

( 1) ( 1)2

2

0

0 1

T
n nN

N R   
 

  
  .

1 ( , , ) ,T T Tq
y N z t

t
  

   
 

1 2( , , , ) ,T m
m R    

1 2( , , , ) ,T n m
n mz z z z R 

   then the affine kinematic

constraints ( ) ( )TJ q q A q  can be expressed as

1 1
1 2 1J J z J A  

  
  and one can obtain 1

1z B N q
 ,

( )q S q z    , 1 1

z
y E

   
    

   



 , where

  ( )
1 10 n m nB I R  
  . Differentiating the constraints

with respect to t , it can be readily obtained

that q Sz Sz   
   , 4 ( )y B Sz Sz   

   , where

( 1)
4

20
n nI

R   
  
 

.

Using DAlembert-Lagrange principle, one can get

( ) ( ) ( ) 0,
T

d L L
B q u t J q q

dt q q
 

  
     

  

(1)

Under (1), the dynamics of the mechanical system can
be described by the following differential equations (
[1]):

( ) ( ) ( ) .
d L L

B q u t J q
dt q q


 

  
 

(2)

Working out the details for the case of Lagrangian yields

( ) ( , ) ( ) ( ) ( ) ( )M q q F q q G q J q B q u t      , (3)

where

( ) 1
( , )= [ ( ) ]

2
TdM q

F q q q q M q q
t q





   

( , )
( , )=

U t q
G t q

q





Now, (3) can be rewritted as

2

2

( , ) ( ) ( )( ) 0

0 ( )0 1

T

T

F q q G q J qM q
y

A q


      
        
      





( ) ( )

( )T

B q u t

A q




    
       

     
(4)

Left multiplying 4
T TB E  on both sides of (4) and elimi-

nating y  by (2), it yields
1

1 2( ) ( , ) ( ) ( )T Tq W q q W q q S S MS S Bu t      , (5)

where
1

1 1 1( ) ( )T TW q S S MS S MSS SS
   

1
2 1( , ) ( ) (T T TW q q S S MS S MSS S M 

   


1)T TS F S G SS    


Define 
q

x
q

 
  
 

, Then system (18) can be expressed
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by the following dynamics

1

1 2

0
( ) ( )

( ) ( , )
Tq

x S S MS t
W q q W q q I


   

    
   





 
.(6)

Suppose ( ), ,u t q q  are measurable. To make ,q q

track the ideal reference model, the reference model
is chosen as [20]

1

00
( )= ( )b

b b b b
b

q I
x x r t A x Br t

q BR Q

    
       

    






(7)

where , ,R Q B  are constant matrices such that system

(7) is stable, ( ), ,b br t q q  are measurable sig-

nals,
b

b
b

q
x

q

 
  
 

. Define the tracking error vector ( )e t

between x  and the desired torque bx  as

( ) ( ) ( ),bt q t q t   ( ) ( ) ( )be t x t x t  ,

( ) [ ( ), ( )]T T Te t t t    .And defining 
0

B
I

 
  
 

. WeWe

have 1( ) ( ) [ ( ) ( ) ( , , )]be t A e t B M q Eu t g r q q
    ,

where 1( , , ) ( )[ ( , ) ( ) ] ( )g r q q M q F q q q G q Rq Qq B r t
         

1( , , ) ( )[ ( , ) ( ) ] ( )g r q q M q F q q q G q Rq Qq B r t          .

Let us construct an augmented linear system

as bz A z Bv  , where 
( )

( )
( )

t
z t

t





 
  
 


. Define the

vectors 
1

2

( )( )
( ) ( ) ( ), ( ) ( ) ( ) - .

( )( )

tt
t t t t e t z t

tt


   



  
       

   


We get
1( ) ( ) [ ( ) ( ) ( , , ) ( )]bt A t B M q t g r q q v t       (1)

the controllability Grammian matrix and the control
function of linear system with the form

0
(0, ) ( ) ( )

ft T T
c f b bG t Exp A t BB Exp A t dt   ,

( ) ) (0, )[ ( ) ( ) (0)],T T T
b c f b f fv t B Exp A t G t Exp A t z t z

   (

where (0)z  and ( )fz t  are the initial state and final

state, respectively. A switching plane is defined as

,i i i is c    1 2( , , , )T
n     , (2)

where ic  are positive constants. Define

1 1 2( , , , )T
nS s s s  , 1 2( , , , )nC diag c c c  .

CONTROLLER DESIGN

Theorem 1

Consider system (1) with the pre-TSM controller

1
1

( )
( )

t
u t S

S


  , (3)

1 2 1( ) ( ) ( ( , ) ( ) ( ) 1)t t D q q Rq Qq B r t v t          

where 1 2, ,    are positive constants to be determined.

Then the system solution ( )t  converges to zero ex-
ponentially.

Proof

According to the equation (2), take the time de-

rivative of 1S  along (1) together with (3), then

1 1 2[ , ] + [ , ][ ( ) ( ( ) ( )nn nn bS C I C C I A t B M q Eu t      

1[ , ] + [ , ][ ( ) ( ( ) ( )S C I C C I A t B M q Eu t
    ( , , ) ( ))]g r q q v t  . (4)

A candidate Lyapunov function 1( )V t  is defined as

1 1 1

1
( )

2
TV t S S . (5)

Differentiating it along (1) together with (3) and (5)
satisfies the following inequality

1 1 1 1 [ , ]T T
nnV S S S C I   

1
1 [ , ][ ( ) ( ( ) ( ) ( , , ) ( ))]T

nn bS C I A t B M q t g r q q v t    

1
1 [( , ) ( ) ( ) ( ) ( , , ) ( )]TS R C Q t M q Eu t g r q q v t 

    

1 1
1 1 1 1 1

1

( )
( ) ( ) ( ) ( , )T T Tt

S t S M q E S S M q D q q
S


   

  

1 1
1 1 1 1 1( ) ( ) ( ) ( , )T T TS t S M q E S S M q D q q 

   

1 1 ( ) ( )TS Rq Qq B r t v t   

1 1S . (6)

where 1 ( , )R C Q   , 
1

1



  are chosen positive

constants, 2 2max{ ,1}  . Since  is positive definite,
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the inequality (6) implies that  reaches zero in finite time
and keeps zero forever. This guarantees that  tends to
zero in finite time, i.e, the trajectories of the systems
(41), (44) and (46) reaches the fast nonlinear switching
surface .
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