HERBAL EYE DROP FOR THE MANAGEMENT OF
OPHTHALMIC DISORDERS

S. K. GUPTA*, I. J. SINGHVIa and A. AGARWALa

Ph.D. Research Scholar, Pacific College of Pharmacy, UDAIPUR – 313003 (Raj.) INDIA
aPacific College of Pharmacy, UDAIPUR – 313003 (Raj.) INDIA

ABSTRACT

The inflammation of the conjunctiva is one of the common ocular disorders, which present redness, watering of the eye and conjunctival congestion and is most frequently occurring in the developing nations. Herbal eye drops are cheap, reliable and have little side effects than the costly synthetic drugs. In the present study, the herbal eye drop formulation was prepared and investigated for its anti-inflammatory (rabbits) and antiallergic activity (guinea-pig ileum), using in vivo and in vitro experimental models, respectively. The data was statistically analyzed using one-way analysis of variance (ANOVA) method. The minimum level of significant was fixed at $p < 0.01$ and $p < 0.05$. The present study was undertaken to elucidate the role of this herbal product in a variety of infective, inflammatory and allergic disorders.

Key words: Inflammation, Herbal, Eyes, Berberis aristata, Arq-e-gulab, Rabbits, Histamine.

INTRODUCTION

The herbal eye drop formulation is prepared for beneficial effects in inflammatory and allergic conditions of the eyes. They are cheap, reliable and have little side effects than the costly synthetic drugs, many of which have adverse effects and are beyond the reach of poor patients. The efficacy of many traditional herbal medicines in curing ocular diseases are now being gradually recognized in modern science as well.

Herbal eye drop is a polyherbal formulation indicated for anti-inflammatory and antihistaminic effect. The ingredients and their activity are presented in Table 1.
Table 1: Formula for herbal eye drop and ingredients with their activity

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Drug</th>
<th>Activity/uses</th>
<th>Qty.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Berberis aristata DC.</td>
<td>Anti-inflammatory(^2,3) and antihistaminic effect</td>
<td>14 g</td>
</tr>
<tr>
<td></td>
<td>(stem wood)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>Azadirachta indica A. Juss. (Gul-e-neem)</td>
<td>Anti-inflammatory activity(^4,5) antihistaminic property has also been reported(^6)</td>
<td>2.8 g</td>
</tr>
<tr>
<td>3.</td>
<td>Cassia absus Linn. (seed)</td>
<td>Anti-inflammatory and astringent properties(^7,8)</td>
<td>2.0 g</td>
</tr>
<tr>
<td>4.</td>
<td>Emblica officinalis</td>
<td>Cooling effect and anti-inflammatory property(^9)</td>
<td>2.4 g</td>
</tr>
<tr>
<td></td>
<td>(Amalaki) flowers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>Coptis teeta Wall</td>
<td>Anti-inflammatory property(^10)</td>
<td>2.4 g</td>
</tr>
<tr>
<td>6.</td>
<td>Rose water</td>
<td>Conjunctivitis(^11) analgesic and antiseptic property</td>
<td>Up to</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.5 Lit.</td>
</tr>
</tbody>
</table>

**EXPERIMENTAL**

**Plant material**

All plant origin drugs and Alum were procured from Pacific College of Pharmacy, PAHER University, Udaipur (Rajasthan) and rose water was obtained from rose water distillation plant. The drugs were properly identified by the botanical literature available and then confirmed by Specimen voucher Nos. are presented in museum.

**Preparation of eye drop**

The herbal eye drop was prepared under aseptic condition as per the method described in Pharmacopeia\(^12\) with slight modification. The different plant origin drugs were coarsely powdered and soaked in one liter Arq-e-gulab (aqua distillate of *Rosa damascena* Mill) for overnight in round bottom flask. The mixture was refluxed at 60\(^{\circ}\)C for three hours. The mixture was then cooled, filtered and Alum was dissolved in this solution and again filtered. The resulting filtrate was collected and made up to one liter with Arq-e-gulab. Preservative (Phenyl ethyl alcohol) was added as in the solution. Finally the solution was filtered through syringe filter and then stored in sterilized vials (sterilized by autoclave).
**Anti-inflammatory activity**

The experimental work was carried out on eighteen healthy rabbits (selected at random), having an average weight of 1.5-2.0 Kg. This study was performed as per guidelines and norms of ethics.

**Statistical analysis**

All data were expressed as Mean ± SE, and the data was statistically analyzed using one-way analysis of variance (ANOVA) method. The minimum level of significant was fixed at $p < 0.01$ and $p < 0.05$.

**Antihistaminic activity**

To check the antihistaminic activity, guinea pig ileum was isolated and prepared according to the method described by Ghosh13.

**RESULTS AND DISCUSSION**

In this study, we have tested herbal eye drop formulation for its anti-inflammatory activity against turpentine liniment-induced ocular inflammation in rabbit’s eye and antihistaminic activity in isolated guinea pig ileum. Five days treatment with eye drop formulation reversed the turpentine liniment-induced inflammatory effects in rabbits. The effect was comparable to that of ibuprofen ophthalmic solution and was significant ($p < 0.01$) when compared with that of control group (Table 2).

**Table 2: Anti-inflammatory effect of control, test and standard drug in turpentine liniment-induced ocular inflammation in rabbit’s eye**

<table>
<thead>
<tr>
<th>Group (n=6)</th>
<th>Ocular lesions score (Mean ± SE)</th>
<th>Day 1</th>
<th>Day 2</th>
<th>Day 3</th>
<th>Day 4</th>
<th>Day 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td></td>
<td>19.3 ± 0.31</td>
<td>17.3 ± 0.40</td>
<td>16.5 ± 0.41</td>
<td>13.2 ± 0.29</td>
<td>9.3 ± 0.32</td>
</tr>
<tr>
<td>Test drug</td>
<td></td>
<td>19.0 ± 0.32</td>
<td>15.0 ± 0.32</td>
<td>13.8 ± 0.30</td>
<td>9.3 ± 0.21</td>
<td>7.5 ± 0.23</td>
</tr>
<tr>
<td>Standard</td>
<td></td>
<td>19.0 ± 0.32</td>
<td>13.5 ± 0.42</td>
<td>12.7 ± 0.32</td>
<td>7.8 ± 0.21</td>
<td>6.0 ± 0.16</td>
</tr>
</tbody>
</table>

Against control = $x$, $^* = p < 0.05$; Against test drug = $y$, $^{**} = p < 0.01$
The eye drop formulation tested for antihistaminic activity in guinea pig ileum in the dose of 0.5 mL in a 50 mL bath showed relaxant effect on the tissue. The magnitude of the contraction of the tissue with addition of 0.1 mL of histamine in organ bath was found to be 48 mm whereas the magnitude of the contraction of the tissue with increasing dose (0.1, 0.2, 0.3 and 0.4 mL of histamine) was found to be 4 mm, 6 mm, 4 mm and 2 mm, respectively.

REFERENCES


3. N. Kareem, M. Advia and M. N. Kishore, Kanpur, India, 1, 455 (1880).


