Volume 8 Issue 3

CHEMICAL TECHNOLOGY

An Indian Journal

🗢 Full Paper

CTAIJ 8(3) 2013 [74-77]

Heat capacity and thermodynamic properties of tellurites Er₂Te₄O₁₁, Yb₂Te₄O₁₁, Tm₂Te₄O₁₁

Lubka Georgieva Atanasova^{1*}, Ginka N.Baikusheva-Dimitrova² ¹Inorganic Chemical Technology Department, University "Prof. Dr. Asen Zlatarov"-Burgas, Prof. Yakimov str.1, Burgas 8010, (BULGARIA) ²Inorganic and Analytic Chemistry Department, University "Prof. Dr. Asen Zlatarov"-Burgas, Prof. Yakimov str.1, Burgas 8010, (BULGARIA) E-mail: lgatanasova@btu.bg; g_baikusheva@abv.bg

ABSTRACT

A tellurites of rare earth elements of the type $Ln_2Te_4O_{11}$, where Ln = Er, Yb and Tm are synthesized and studied. Their molar heat capacities are experimentally determined. The temperature dependences of their molar heat capacities are determined using the least squares method. The thermody-

namic properties are calculated: entropy (Δ_T^T, S_m^0) , enthalpy (Δ_T^T, H_m^0) and

Gibbs function ($\Delta_T^T G_m^0$). © 2013 Trade Science Inc. - INDIA

KEYWORDS

Molar heat capacity; Thermodynamic properties; Tellurites; Rare earth elements; Enthalpy.

INTRODUCTION

The studies on the tellurites of rare earth elements can be used to fill in data in an important branch of inorganic chemistry as chemistry of tellurium and rare earth elements. It is practically important to know the thermodynamic characteristics of the compounds studied $\text{Er}_2\text{Te}_4\text{O}_{11}$, $\text{Yb}_2\text{Te}_4\text{O}_{11}$, $\text{Tm}_2\text{Te}_4\text{O}_{11}$ since these tellurites are widely used in modern technologies for preparation of optical glasses, in ceramic industry, medicine and agriculture^[1-3]. Nowadays, a great number of publications are related to studies on various types of tellurites and their application^[4-8].

The survey of the available literature did not give data related to the preparation and studies on $\text{Er}_2\text{Te}_4\text{O}_{11}$, $\text{Yb}_2\text{Te}_4\text{O}_{11}$, $\text{Tm}_2\text{Te}_4\text{O}_{11}$.

The aim of the present work is to derive the temperature dependence of molar heat capacity and calculate the thermodynamic properties of $\text{Er}_2\text{Te}_4\text{O}_{11}$, Yb₂Te₄O₁₁ and Tm₂Te₄O₁₁. EXPERIMENTAL

The tellurites of rare earth elements $Er_2Te_4O_{11}$, $Yb_2Te_4O_{11}$ and $Tm_2Te_4O_{11}$ are synthesized from tellurium dioxide (TeO₂) and oxides of the rare earth elements: Yb_2O_3 , Er_2O_3 and Tm_2O_3 of high purity 99.999. The oxides preliminarily weighed to amounts corresponding to the stoichiometry of the goal product are mixed, homogenized and placed in ampoules which are then vacuumed. The substances are melted in an electric crucible oven. After reaching the melting temperature, it is maintained for 48 h and then the oven is switched off and cooled down. The ampoules are then opened and the synthesized samples are homogenized and separated for chemical, differential thermal and X-ray analyses^[9-11].

The composition of the tellurites of rare earth elements is determined by chemical analysis. The metal

ions in the rare earth oxideS Me_2O_3 are determined by the complexonometric method with 0.05 M solution of complexon III and orange-xylene as indicator^[9]. The tellurite ions in the oxides of the type TeO₂ are determined iodometrically and gravimetrically^[10]. The results obtained showed that the compounds synthesized correspond to their stoichiometric composition to $Er_2Te_4O_{11}$, $Yb_2Te_4O_{11}$ and $Tm_2Te_4O_{11}$.

The degree of synthesis is determined by X-ray analysis of the tellurites, performed on URD-6 apparatus (Germany) in regime of diffractometric recording using Cu-K_a emission and Ni-filter for the b - radiation. The integral intensities of the diffraction maxima are determined gravimetrically^[10].

To find the temperatures of the phase transitions in the tellurites synthesized, thermal analysis is carried out on a derivatograph OD-102 (MOM, Hungary).

The molar heat capacity of the tellurites is determined using differential scanning calorimeter DSC-III (Setaram, France). The working temperature interval is 450-600 K. The samples are finely ground and sieved through a 0.25 mm² sieve. The experimental conditions have been described earlier^[12]. For each tellurite, 4 samples are prepared and the average values are calculated^{"[13]}.

TABLE	1: Expe	erimental	molar	heat	capacities	$C_{n.m}$	of
Er, Te ₄ O ₁	,Yb,Te ₄	O ₁₁ and Tr	n,Te ₄ O	11		<i>r</i> ,	

T/IZ	$C_{p,m}/(\mathbf{J}.\mathbf{K}^{-1}.\mathbf{mol}^{-1})$								
1/K	Er ₂ Te ₄ O ₁₁	Yb ₂ Te ₄ O ₁₁	$Tm_2Te_4O_{11}$						
448	393	395	391						
458	389	386	387						
467	391	388	391						
477	397	392	388						
487	384	378	382						
497	391	387	380						
507	394	394	390						
517	395	394	390						
527	399	390	395						
537	397	396	401						
547	396	397	402						
557	397	398	403						
567	385	373	398						
577	393	374	396						
587	391	373	399						

TABLE 2 : Standard molar entropy $\Delta_0^T S_m^0$, coefficients *a*, *b*, *c*, and errors, T = 298.15 K

Compound	$\frac{\Delta_0^{\mathrm{T}}\mathrm{S}_\mathrm{m}^0}{\mathrm{J.K}-\mathrm{1.mol}-\mathrm{1}}$	а	b	С	$10^{2} \mathrm{x} \frac{\mathrm{\delta Cp}}{\mathrm{Cp}}$
$Er_2Te_4O_{11}$	473.60	392.10	5.18x10 ⁻³	4.98×10^5	0.78
$Yb_2Te_4O_{11}$	451.10	247.15	205.58×10^{-3}	-104.03×10^5	1.03
$Tm_2Te_4O_{11}$	457.80	71.50	472.22x10 ⁻³	-199.75×10^5	1.26

TABLE 3 : Standard molar thermodynamic functions of $\text{Er}_{T}\text{Te}_{4}\text{O}_{11}$, T = 298.15 K

TABLE 4 : Standard molar thermodynamic functions of $Yb_2Te_4O_{11}$, T' = 298.15 K

<i>T</i> /K	Cp,m	$\Delta_T^T H_m^0$	$\Delta_{T}^{T}S_{m}^{0}$	$(\Delta_T^T G_m^0 / T)$	TK	Cp,m	$\Delta_T^T H_m^0$	$\Delta_{T'}^T S_m^0$	$(\Delta_T^T G_m^0 / T)$
	J.K ⁻¹ .mol ⁻¹	J.mol ⁻¹	J.K ⁻¹ mol ⁻¹	J. K ⁻¹ mol ⁻¹	1/15	J.K ⁻¹ .mol ⁻¹	J.mol ⁻¹	J. K ⁻¹ mol ⁻¹	J.K ⁻¹ mol ⁻¹
450	391.97	59329.20	634.42	502.58	450	391.03	60981.40	616.88	481.37
500	392.69	78946.55	675.76	517.86	500	391.55	80533.20	658.08	497.02
550	393.30	98596.98	713.21	533.95	550	394.61	100178.63	695.53	513.39
600	393.82	118275.45	747.46	550.33	600	399.40	120022.77	730.06	530.02
650	394.29	137978.48	778.99	566.72	650	405.40	140138.36	762.26	546.66
700	394.71	157703.58	808.23	582.94	700	412.29	160577.38	792.55	563.15
750	395.10	177448.94	835.48	598.88	750	419.83	181377.91	821.25	579.41
800	395.46	197213.16	860.99	614.47	800	427.87	202568.56	848.60	595.39
850	395.81	216995.22	884.98	629.69	850	436.29	224171.16	874.79	611.06
900	396.15	236794.30	907.61	644.51	900	445.02	246202.72	899.97	626.41
950	396.47	256609.75	929.04	658.92	950	453.98	268676.66	924.27	641.45
1000	396.78	276441.06	949.38	672.94	1000	463.13	291603.72	947.79	656.18
				-					

Full Paper

TABLE 5 : Standard molar thermodynamic functions of $Tm_2Te_4O_{11}$, T = 298.15 K

T/K	Cp,m	$\mathbf{\Delta}_{\mathbf{T}}^{\mathrm{T}}\mathbf{H}_{\mathrm{m}}^{0}$	$\Delta_{T}^{T}S_{m}^{0}$	$(\Delta_T^T G_m^0 / T)$
1/1	J.K ⁻¹ .mol ⁻¹	J.mol ⁻¹	J. K ⁻¹ mol ⁻¹	J.K ⁻¹ mol ⁻¹
450	382.64	60288.51	621.97	488.00
500	387.51	79517.62	662.49	503.45
550	397.25	99120.22	699.85	519.63
600	410.32	119298.06	734.95	536.12
650	425.72	140190.83	768.39	552.71
700	442.82	161898.31	800.56	569.27
750	461.18	184493.67	831.73	585.74
800	480.49	208031.78	862.10	602.06
850	500.53	232554.61	891.83	618.24
900	521.16	258094.78	921.02	634.25
950	542.24	284678.09	949.76	650.10
1000	563.70	312325.12	978.12	665.79

The relative error did not exceed 0.1 %. The experimental results obtained are presented in TABLE 1.

CALCULATION PROCEDURE, RESULT AND DISCUSSION

The experimental results are further computer processed by the least squares method^[14-16] to find the coefficients a b and c in the equation for the molar heat capacity (TABLE 2):

$$\mathbf{Cp,m}(\mathbf{T}) = \alpha + \mathbf{b.T} - \mathbf{c.T}^{-2}$$
(1)

The molar heat capacities are calculated according to eq 1, and they are then used to find the temperature dependencies of the entropy $(\Delta_{T}^{T} S_{m}^{0})$, enthalpy $(\Delta_{T}^{T} H_{m}^{0})$ and Gibbs function (-/T) using the following equations^[17-18]:

$$\Delta_{\mathbf{T}'}^{\mathrm{T}} \mathbf{S}_{\mathrm{m}}^{0} = \Delta_{0}^{\mathrm{T}'} \mathbf{S}_{\mathrm{m}}^{0} + \int_{\mathbf{T}'}^{\mathrm{T}} \mathbf{C} \mathbf{p}, \mathbf{m} / \mathbf{T}.\mathbf{d} \mathbf{T}$$
(2)

$$\Delta_{\mathbf{T}'}^{\mathbf{T}}\mathbf{H}_{\mathbf{m}}^{\mathbf{0}} = \int_{\mathbf{T}'}^{\mathbf{1}} \mathbf{C}\mathbf{p}, \mathbf{m}.\mathbf{d}\mathbf{T}$$
(3)

$$(-\Delta_{\rm T}^{\rm T} G_{\rm m}^{\rm 0} / {\rm T}) = \Delta_{\rm 0}^{\rm T} S_{\rm m}^{\rm 0} - \Delta_{\rm T}^{\rm T} {\rm H}_{\rm m}^{\rm 0} / {\rm T}$$
(4)

For the determination of the temperature dependencies of the thermodynamic values, the standard molar entropy $(\Delta_0^{T} S_m^0)$ is calculated by the method of Kelly and Koumok^[13,19-21].

The calculated coefficients a, b, c in eq.(1), as well

CHEMICAL TECHNOLOGY An Indian Journal as the calculation errors are shown in TABLE 2.

The results from the calculations of these thermodynamic functions are presented in TABLES 3-5 and Figures 1-3.

Figure 1 : Dependence of molar heat capacity of $\text{Er}_2 \text{Te}_4 \text{O}_{11}$ on temperature (450-1000 K). $C_{p,m}(T)/(\text{J mol}^{-1}\text{K}^{-1}) = 392.10$ + 5.18x10⁻³xT - 4.98x10⁵xT

Figure 2 : Dependence of molar heat capacity of Yb₂ Te₄O₁₁ on temperature (450-1000 K). $C_{p,m}(T)/(J \text{ mol}^{-1}\text{K}^{-1}) = 247.15$ + 205.58x10⁻³ xT +104.03x10⁵ xT⁻²

CONCLUSION

The present work is continuation of our research on tellurites of rare earth elements of the type $Ln_2(TeO_3)_3$, where Ln = Yb, Dy, $Er^{[13]}$. The molar heat capacities of compounds of the type $Ln_2Te_4O_{11}$, където

Full Paper

Ln= Tb, Er, Yb and Tm are determined. The temperature dependence of the molar heat capacity is also determined. The thermodynamic properties: entropy

 $(\Delta_{T'}^T S_m^0)$, enthalpy $(\Delta_{T'}^T H_m^0)$ and Gibbs function $(\Delta_{T'}^T G_m^0)$ are calculated.

REFERENCES

- H.Kim, K.Komatsu, K.Shioya, K.Matusita, K.Tanaka, K.Hirao; J.Non-Cryst.Solids, 208, 303 (1996).
- [2] K.Hirano, Y.Benino, T.Komatsu; J.Phys.Chem.Solids, **62**, 2075 (**2001**).
- [3] M.Masson, H.Lutz, B.Engelen; Sulfites, selenites and tellurites, Pergamon, Oxford, (1986).
- [4] I-C.Lin, A.Navotsky; J.Non-Cryst.Solids, 226, 256 (1998).
- [5] K.Hemlata, S.Bhojane, J.Kulkarni, S.Kulkarni; J.Therm.Anal.and Calorim., **111**, 939 (**2013**).
- [6] D.Rimpi, R.Pankajavalli, J.Joseph, S.Anthonysamy, V.Ganesan; J.Therm.Anal.and Calorim. (in press).
- [7] R.Pankajavalli, A.Jain, A.Sharma, S.Anthonysamy, V.Ganesan; J.Therm.Anal.and Calorim. (in press).
- [8] M.Tavlieva, L.Vlaev; J.Chem.Eng.Data, 52, 476 (2007).
- [9] V.Umlang, A.Jansen, P.Tierg, S.Winsh; Theorie und Praktische Anwendung von Complexbildern, Dechema, Frankfurt am Main, (1971).
- [10] J.Nazarenko, E.Ermakov; Analytic chemistry of the tellurium and selenium, Science; Moscow, (1974).

- [11] W.Hillebrand, G.Lundell, H.Bright, J.Hoffman; Applied Inorganic Analysis, John Wiley&Sons:New York, (1953).
- [12] J.McNaughton, C.Mortimer; Differential Scanning Calorimetry. IRS:Physical chemistry series 2', Butterworth; London, 10, (1975).
- [13] L.Atanasova, G.Baikusheva-Dimitrova; J.Therm.Anal.Calorim., 107, 809 (2012).
- [14] V.Kafarov; Cybernetic methods in Chemistry and Chemical Technology, Chemistry, Moscow, (1976).
- [15] I.Vuchkov, St.Stoyanov; Mathematic modeling and optimization of technological object, Technics; Sofia, (1986).
- [16] E.Bojanov, I.Vuchkov; Statistical methods for modeling and optimization of multifactor objects, Technics; Sofia, (1973).
- [17] M.Karapetianc; Chemical Thermodynamics, Chemistry; Moscow, (1975).
- [18] C.Norman; J.Chem.Educ., 65, 700 (1988).
- [19] V.Kireev; Methods for the practical calcilations in the thermodynamics of the chemical reactions; Chemistry; Moscow, (1975).
- [20] V.Koumok; Methods for the assessment of the thermodynamics characteristics, Science; Novosibirsk, (1987).
- [21] B.Kassenov, A.Pashinkin; Thermodynamics in inorganic the chemistry, Karagandindskii GU; Karaganda, (1989).