)
Tra 4”‘@“‘

Srtien
Hnc.

#na@tiaa[ CH

Volume 14 Issue 8

CMISTRY
A Judian Joaraal

ISSN : 0974-7419

s Pt P aper

ACAIJ, 14(8) 2014 [302-307]

Graph kernels and applications in protein classification

Jiang Qiangrong*, Xiong Zhikang, Zhai Can
Department of Computer Science, Beijing Univer sity of Technology, Beijing, (CHINA)
E-mail: jianggiangrong@gmail.com

ABSTRACT

Protein classification isawell established research field concerned with the
discovery of molecule’s properties through informational techniques. Graph-
based kernels provide a nice framework combining machine learning tech-
niques with graph theory. In this paper we introduce a novel graph kernel
method for annotating functional residuesin protein structures. A structure
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is first modeled as a protein contact graph, where nodes correspond to
residues and edges connect spatially neighboring residues. In experiments
on classification of graph models of proteins, the method based on Weisfeiler-
Lehman shortest path kernel with complement graphs outperformed other

state-of-art methods.

INTRODUCTION

Kernel methods arean important method whichis
widdy usedingatigtica learning theory!. Kerndshd p
to adapt classficationregardlesshow classification per-
forms. That isto say, kernelsact likean interface be-
tween classification tools and data sets via Support
Vector Machines?. Early studieson kernel methods
dedt dmost exclusively with vector-based descriptions
of input data. Thisprocedure, though convenient, does
not dwayseffectively capturetopologica relaionships
inherent to the data; therefore, the power of thelearn-
ing process may beinsufficient. Hausd ert® wasthefirst
to defineaprincipled way of designing kernelson struc-
tured objects, the so-called R-convolution kernel. Over
recent years, kernelson structured objectssuch asstrings
andtrees, on nodesin graphsand on graphshave been
defined. Graphsare natural data structuresto model
such structures, with nodes representing objectsand
edgestherelations between them. Inthis context, one
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often encounterstwo questions: “How similar are two
nodes or edgesin agiven graph?”’ and “How similar
aretwo graphsto each other?”

For ingtance, in protein dassification, onemight want
to predict whether agiven proteinisan enzymeor not.
Computationd gpproachesinfer proteinfunction by find-
ing proteinswith s milar sequence, structure, or chemi-
cal properties. A very successful recent method isto
model the proteinasagraph, and assign similar func-
tionsto similar graphs®. Generally speaking, graph
kernd sarebased on the comparison of graph-substruc-
turesviakernels. Severd different graph kernelshave
been defined in machinelearning which can be catego-
rized into three classes: graph kernelsbased onwaks®
and paths®, graph kernel sbased on limited-size sub-
graphs’8, and graph kernels based on subtree pat-
terng>9. To defineagraph kerndl, somerequirements
areput forward: the kernel should be measurableon
theissueof similarity for graph; second, it should be
computablein an acceptabletime; third, it should be
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positivedefinite; fourth, it should beapplicablewidely.
However, someof thekernelscannot meet dl of these
requirements. In this paper, we present anew graph
kernel that measure similarity based on Weisfeiler-
Lehman shortest path in undirected graphs, that are
computable in polynomia time, that are positive
semidefinite

BASIC KNOWLEDGE

Somedefinitionson graph theory

Wedefineagraph G asatriplet (V, E, |), whereV
istheset of vertices, Eisthe set of undirected edges,
and| : V— X isafunctionthat assignslabelsfroman
alphabet X to nodesin the graph. The neighborhood
N(v) of anodev isthe set of nodesto whichviscon-
nected by an edge, thatisN(v) ={v’|(v,v’) € E} . We
assumethat every graph has n nodes, medges, and a
maximum degreeof d.

Theadjacency matrix Aof G isdefined asfollows:

Al :{ ; |f(vi,vj)e-E, |

otherwise
wherev, and v, are nodesin G. Labels can be added
onnodesor edges, theselabel sarereferred asattributes.

A walkw of lengthk— 1 in a graph is a sequence
of nodesv,, v,, ... v where(v_,v) € Efor 1<i<k,

A path pisawak without same nodesin the se-
quence.

A cycleisawdkwithv, =v,, asimplecycle does
not have any repeated nodes except for v.,.

Suppose G(V, E) isagraph with vertex set V and
edge set E. Then, its complement G(v,E) isagraph
withthesamevertex set V, but with adifferent edge set
E = VxV \E. Inother words, thecomplement graphiis
madeup of al theedgesmissing fromtheorigina graph.
Graph isomor phism

Graph similarity or isomorphism™® isthemost es-
sentid problemfor learningtaskslikedusteringand das-
sification on graphs. In graph theory, anisomorphism
of graphs G and H is a bijection between the vertex
setsof Gand H: f: V(G) — V(H), such that any two
verticesuand v of G areadjacent in G if and only if
f(u) and f(v) are adjacent in H. Graph isomorphism

—— Fyll Peper

problemisneither known to be polynomial -comput-
able, nor NP-hard™V.

THEWEISFEILER-LEHMAN TEST OF
ISOMORPHISM

Our method uses concepts from the Weisfeil er-
Lehmantest of isomorphism*213, morespecificdlyits
1-dimensiond variant. Assumewearegiventwo graphs
G and H and we would like to test whether they are
isomorphic. The 1-dimWe sfeler-Lehmantest proceeds
initerations, whichweindex by i and which comprise
thegtepsgiveninAlgorithm 1.

Thekeyideaof thedgorithmisto augment thenode
label s by the sorted set of nodelabel s of neighboring
nodes, and compressthese augmented |abel sinto new,
shortlabels. Thesestepsarethen repeated until thenode
labdl setsof G and H differ, or thenumber of iterations
reachesn. If the setsareidentical after niterations, it
meansthat either G and H areisomorphic, or thea go-
rithm has not been ableto determinethat they are not
isomorphic. SeeFigure 1, for anillustration of these
steps.

Algorithm1

Oneiteration of the 1-dim. Weisfeiler-Lehman test
of graphisomorphism (1968)
1. Multisat-labd determination
e Fori=0,setM(v) =1,v).
e Fori >0, assign amultiset-label M.(v) to each
nodevin G and H which consstsof the multiset
{1, (Wl & N(W}.
2. Sorting each multiset
e Sort elementsin M.(v) in ascending order and
concatenatethemintoastrings(v).
e Addl_,(v) asaprefix tos(v) and call theresult-
ingstrings(v).
3. Labd compression
e Sortdl of thestringss(v) for al vfromG and H
inascending order.
e Map each string s(v) to anew compressed la-
bel, usingafunctionf: X* — X suchthat f(s(v))
= f(s(w) iff (v) = s(W).
4. Rdabding
e Setl(v) =f(s(v)) for al nodesin G and H.
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Figure 1: lllustration of the 4 steps of oneiteration of the
computation of theWeisfeiler-L ehman test of isomor phism

TheWeisfeiler-L enman shortest path kernel

Ineachiterationi of theWel sfeiler-Lehman ago-
rithm (seeAlgorithm 1), weget anew labeling . (v) for
al nodesv. Recall that thislabelingisconcordant in G
and H, meaningthat if nodesin G and H haveidentica
multiset [abels, and only inthiscase, they will get iden-
tical new labels. Therefore, we canimagineoneitera-
tion of Weisfaller-Lehman rdabdling asafunctionr((V,
E, 1)) =(V, E I,) that transforms all graphsin the
samemanner. Notethat r dependson the set of graphs
that we consider.

Hnalytical CHEMISTRY o

Weisfeller-L enman sequencegraphs

DefinetheWei sfeiler-Lehnman graph at height i of
thegraphG=(V, E, I) asthegraph G = (V, E, | ). We
cal the sequence of Weisfeiler-Lehman graphs,

{G, G, .., G} ={(V,E, 1)), (V, E 1), ..., (V,E, 1)},

where G, = G, theWeisfeiler-L ehman sequence up to
heighthof G. G, istheorigina graph, G, =r(G) isthe
graph resulting from thefirst relabeling, and soon.
Weisfeiler-Lehman kernel with complement
graphs

Let kbeany kernd for graphs, that wewill cal the
basekernd. ThentheWe sfeil er-Lehman kernel withh
iterationswith the basekerne kisdefined as:
ki, (G,H)=k(G,,H,)+K(G ,H,)+-+k(G,,H,).

If wetakethe complement graphsinto consider-
ation, wewill derivetheWe sfeller-Lehman kernd with
complement graphs.

K3, (G H) =K (G, Ho)+k (G H ) +K (G, H, )+

k(G H,)+-+k(G, . H,)+k(G,.H,),

where G,,G,---,G,),(H,,H, -~ H,) arecomplement
graphsof (G, G, ...,G,), (H, H,, ..., H,).

Let the basekernel k be any positive semidefinite
kernel on graphs. Then the corresponding Weisfeller-
Lehmankernd k;, ispositivesemidefinite.

Shortest path and Floyd-War shall algorithm

Given an undirected graph G = (V, E) the shortest
path graphi4, G,(V, E’), which contains the same set
of vertices as G and the edge between every pair of
verticesislabeled with the shortest distance between
themintheorigina graph. Thetransformationfrom G
to GSp can be performed by any all-pairsshortest path
algorithm. Floyd—Warshall algorithm (See Algo-
rithm2)™ isattractiveand effective becauseitisstraight-
forward and hastime complexity of O(n®). Then, aker-
nel functionwasusedto ca culatethesimilarity between
two shortest path graphs according to the following
definitions, whichwerefirst defined by Borgwardt and
Kriegd!®. Itisproved to beapositive semidefiniteker-
nel andiscomputablein polynomid time.

Algorithm 2

Floyd—Warshall algorithm (Graph G with nnodes
and adjacency matrix A)

Au Tudian Yournal
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Floyd(G)
fork< 1ton
fori<1ton
forj«<1ton
if (cost(i, K))+cost(k, j)<cost(i, ))
cost(i, j)=cost(i, k)+cost(k, |)
endif
endfor
endfor
endfor
Let e, be the edge connecting vertices v, and w,
on graph G, and e, be the edge connecting nodes v,
and w, on graph H. A walk on an edge includes the
edgeand itstwo adjacent vertices. Awalk kernel k
isused tocomparethewalk e ande, as k (e, €)=
knode(vl’ VZ)* kedge(el’ ez)* knode(Wl’ WZ)’ Where knode iS
thekernd function for comparing two vertices, andk e
isakernd function for comparing two edges.
Thekernel function for comparing two verticesu
and visaGaussian kerndl 2% over their respectivefea
turevectors,

hmuw=a{mgt;ﬂq-

28

Thekernel function for comparing two edgeseand
fisaBrownian bridge kernel that assignsthe highest
vaueto edgeswithidentica weights, andOtodl edges
that differ in weight morethan aconstant c:
kedge(e, f) = max(0, c—|length(e) — length(f)|).

Inthis paper, weusec=2.
Shortest path kerne

Giventwo shortest path graphs G(V,, E,) and H(V,,
E,) theshortest path graph kerndl:
ksp(G’ H) = Z kaalk (el’ez)'
wherek , isakernel functionfor comparing two edge
walksof length 1.

Floyd-transformation requires O(n) time. E, and
E, contain O(n?) edges. The computation of the short-
est-path graph kernd requires O(n?) time.
Weisfeiler-L ehman shortest path kernel with
complement graphs

With theabovedefinitions, weareready to define
Wei sfell er-Lehman shortest path kernel with comple-
ment graphsas:

—— Fyll Peper

ki, (G, H) =k (G, Hy)+k,(Gy Ho)+k, (G, H,)
+k (G H)+--+k (G, ,H)+k_(G,,H,).

For N graphs, theruntime of WL shortest path kernel
will scaleas O(Nn).

EXPERIMENTS

Experimental settings

We compared the performance of therandomwalk
graphkernd™, theshortest path kerndl, the WL Short-
est Kernel without complement graphsand WL Short-
est Kernd with complement graphsintermsof classifi-
cation accuracy of the classification on D& D¢ and
ENZY MES datasets, whereaccuracy showstheoverdl
percentage of correct classifications. D& D isadataset
of 691 enzymesand 487 non-enzymes. Each proteinis
represented by agraph, in which thenodesareamino
acidsand two nodes are connected by an edgeif they
arelessthan 6 Angstroms apart. The task is to classify
theprotein structuresinto enzymes and non-enzymes.
ENZYMESisadataset of proteintertiary structures
obtained from Borgwardt et al (2005), consisting of
600 enzymes from the BRENDA enzyme database
(Schomburget d., 2004). Inthis casethetask isto cor-
rectly assign each enzymeto one of the 6 EC top-level
classes. Nodes arelabeled in the dataset. In terms of
D& D, wealso anadyzed the sengitivity, specificity, and
Matthews correl ation coefficient (MCC)*¥ of theclas-
sficationsinadditionto accuracy (TABLE 3), where
sengtivity isthe percentage of enzymesthat havebeen
correctly classified asenzymes, specificity indicatesthe
percentage of non-enzymesthat have been correctly
classified, and M CC showsthe overlapping between
thepredictionsand theactua distribution.

Suppose P represents positiveinstances N nega-
tiveinstances, TPthe number of truepositives, TN the
number of true negatives, FPthe number of fal se posi-
tivesand FN the number of false negatives. Thenthe
accuracy, sensitivity, specificity and MCC canbecal-
culated by thefollowing formulas,

accuracy = TP+TN
Y= TPAN
L TP
sensmwty =—=—"———,
P~ TP+FN

—— a%a['yttaa[’ CHEMISTRY
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ecificit —m—i
¥ Y=N "FP+TN’
MCC = TPxTN—-FPxFN

~ J(TP+FP)(TP+FN)(TN+FP)(TN+FN)

We performed 10-fold cross-validation of C-Support
Vector MachineClassificationusing LIBSVM, using
9foldsfor training and therest onefor testing. All pa-
rameters of the SVM were optimized onthetraining
dataset only. To excluderandom effectsof fold assign-
ments, werepeated thewholeexperiment 10times. We
show average classification accuraciesand standard de-
viaionsin TABLE 1. TABLE 2 showsthesize of both
dataset and runtimeof the methods computing on them.

TABLE 1: Theclassification accuracy (%) and standard
deviation of each kernel on protein data sets

M ethod/Data set D&D ENZYMES
Random Walk Kernel 70.26(+0.86) 20.14(+0.69)
Shortest Path Kernel 78.19(x0.26) 42.18(+0.43)
WL Shortest Path Kernel 81.27(x0.70) 62.47(+0.61)
without complement graphs
WL Shortest Path Kernel 83.64(+x0.92) 63.96(+0.84)

with complement graphs

TABLE 2: CPU runtimefor kernel computation on protein
classification

Data set D&D ENZYMES
Classdze 2 6
Maximum nodes 5478 126
Average nodes 284.32 32.63
Number of graphs 1178 600
Random Walk Kerndl 52days 39days
Shortest Path Kernel 25h 17min22s 38s
WL Shortest Path Kernel 64days 1min3s
without complement graphs
WL Shortest Path Kernel 71days 2minlls

with complement graphs

TABLE 3: Comparison of our method with othersusngD& D
dataset

Method Sensitivity Specificity MCC
Random Walk Kemd 6528%  7135% 0523
Shortest Path Kernel 7132%  79.64% 0736
x'{hifggﬁpmefgr‘:phs 7824%  83.77% 0.821
WL Shortest PathKerndl - g1 50, 851306 0,836

with complement graphs

Results

Intermsof runtime, The shortest path kernel and
the WL shortest path kernel were competitiveto the
randomwalk kernel onsmaller graphs(ENZYMES),
but on D& D their runtime degenerated to morethan 25
hoursfor the shortest path kernel, 64 daysfor the WL
shortest path kernel without complement graphsand
71 daysfor the WL shortest path kernel with comple-
ment graphs. Using agraph to modd thedistribution of
amino acid residues on the 3D structure, our method
efficiently capturesvariousstructural determinantsre-
lated to protein function. Thekerndsusing WL method
performed better than other kerndl types. Furthermore,
the WL shortest path kernel with complement graphs
outperformsthe other kernel swith an accuracy of at
least 83.64%, and it achievesimprovementsin accu-
racy morethan 2% over the WL shortest path kernel
without complement graphs. Meanwhile, considering
shortest pathsinstead of walksincreasesclassification
accuracy sgnificantly. For therandomwak kerndl, clas-
gficationistheworst aswith anincreasing number of
tottering walks, classification accuracy decreases.
TABLE 3 aso showsthat our proposed method out-
performsother methods.

CONCLUSIONS

In this paper, We propose asimple yet effective
and efficient graph classification approach that isbased
on topological and label graph attributes. Our main
ideaisthat graphsfrom the same class should have
similar attributevalues. On the basis of an extensive
comparison with state-of-the-art graph kernel classi-
fiers, we show that our approach yields competitive
or better accuraciesand hastypicaly muchlower com-
putationd times. Our conclusionisthat graph attributes
areeffectivein capturing discriminating structural in-
formation from different classes. Our new kernels
based onWe dfeller-Lenmantest of isomorphism open
the door to applications of graph kernels on large
graphsin bioinformatics, for instance, proteinfunction
prediction viadetailed graph models of protein struc-
tureon theamino acidlevel, or on gene networksfor
phenotype prediction. A challenging question for fur-
ther studieswill beto consider kernelson graphswith
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continuous or high-dimensiona nodelabelsand their
efficient computation.
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