
Global stability of impulsive hopfield neural networks with multiple delays

Yuanqiang Chen
College, Guizhou Minzu University, Guiyang, 550025, (CHINA)

E-mail: yuanqiangc@126.com

FULL PAPER

ABSTRACT
In this paper, the global stability problem of discrete impulsive Hopfield
neural networks with multiple delays is studied. By means of the Lyapunov
stability theory and discrete Halanay inequality technique, we develop
sufficient conditions for the global asymptotical stability and global
exponential stability for discrete impulsive Hopfield neural networks with
multiple delays. Finally, a numerical example is presented to illustrate the
efficiency of our results.  2013 Trade Science Inc. - INDIA
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INTRODUCTION

Since Hopfield neural networks was designed by
John Hopfield in 1982[1,2], it has applied successfully
in many areas such as combinatorial optimization, sig-
nal processing and pattern recognition, see e.g.[2-4].
Recently, it has been realized that the axonal signal
transmission delays often occur in various neural net-
works, and may cause undesirable dynamic network
behaviors such as oscillation and instability. Conse-
quently, the stability analysis problems for delayed
neural networks have gained considerable research
attention. Up to now, a lot of results have been re-
ported in the literature, see e.g.[5-16] and references
therein. On the other hand, Impulsive phenomena can
been encountered in real nervous systems These prac-
tical systems are characterized by the fact that abrupt
jumps happen suddenly at some time points and the
system state variables jump out of the original trajec-
tory governed by the continuous or discrete systems
at these time points. For instance, the climate changes

have an impulsive impact on plant population and the
supply and demand of productions will jump abruptly
due to the sharp changes of financial environments.
Those systems with impulsive effects are usually called
impulsive systems and described by impulsive differ-
ential or difference equations see e.g.[17,18]. It is well
known that impulses and time delays frequently cause
instability and performance deteriorations. Thus, ig-
noring them always results in incorrect conclusions.
This motivates us to study the global stability perfor-
mance of Hopfield neural networks with impulsive and
time delays. The problem of global stability analysis
for neural networks with impulsive effects and mul-
tiple delays emerges as a research topic of primary
importance, see e.g.[19-22].It should be pointed out that,
in most existing literature, the global asymptotical sta-
bility issue and global exponential stability issue have
been treated separately. To the best of the authors�
knowledge, the global stability analysis problem for
impulsive Hopfield neural networks with multiple de-
lays has not been fully investigated, and remains im-
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portant and challenging.
In this paper, we focus our attention on the global

stability analysis of impulsive Hopfield neural networks
with multiple delays. We consider the following impul-
sive Hopfield neural networks with multiple delays,
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Where  1 2, , , n
nx x x x R  is the state vector,,

   0,1 , 1,ia i N n  is a constant, :jf R R ,    : 1k n
ig N R R 

and :i R R  are continuous functions and  0 0jf  ,   00i x  ,
   ,0,0, ,0 0k
ig m  . The impulsive behaviors can be de-

scribed by      1i i ix m x m x m    and the initial con-

dition is given as    , , 1, ,0i m m       .

  0ij m  ÿ ijT are the connection weights and transmis-

sion delays of the i th neuron and the j th neuron, re-

spectively,
 

  
, 1,
max ij

i j N n
m 


 , and  ijm m 

as m .   , k
k iN g is impulsive law, ,  10 , 0k kN N k N


  

and kN as k  .    , , 1, 2, ,N k l k k k l    ,

 N k   , 1, 2,k k k   .

As Halanay inequality technique[23] and[24] provides
a general frame to investigate stability performance of
delayed dynamical systems, it is also a powerful tool
to study impulsive Hopfield neural networks with mul-
tiple delays. In this paper, sufficient conditions for the
global asymptotical stability and global exponential sta-
bility for discrete impulsive Hopfield neural networks
with multiple delays are established. The rest of the
paper is organized as follows. In Section II, some sta-
bility concepts of impulsive discrete systems with mul-
tiple delays and lemmas are introduced. In Section
III, sufficient conditions for the global stability of the
impulsive Hopfield neural networks with multiple de-
lays are established via discrete Halanay inequality. In
Section IV, a numerical example is presented to show
the validity of our results. Finally, section V concludes
the paper.

PRELIMINARIES

In this paper, we need the following three assump-
tions.

Assumption A. The sequence { }kN of the impulsive
time points satisfies

12k kN N


  .

Assumption B. The impulsive function   k
ig  satis-

fies: if there exists   0k
ij  , such that for

any       1 2, , , n
nx t x t x t R

ÿ  , 0t R k N  , the fol-

lowing inequality holds,

              1
1

, , , , 1,
n

k k
i i n ij j

j

x t g t x t x t x t i N n


   .

Assumption C. The function { }jf satisfies: if there

exists 0j  , such that for any 1 2,t t R , the following in-
equality holds,

     1 2 1 2 , 1,j j jf t f t t t j N n    .

First, we need to introduce some stability concepts
lemmas, which are needed throughout this paper, for
the impulsive delayed discrete system (1).

Definition 1

Given 0  , if there exists a   0    such that

    





ix
i 0

max implies   ,x m m K   ,

Then the impulsive delayed discrete system (1) is
said to be stable.

Definition 2

If the impulsive delayed discrete system (1) is stable

and  lim 0
m

x m


 , then the impulsive delayed discrete

system (1) is said to be asymptotically stable.

Definition 3

If there exist 0K  and  0,1r such that

  ,mx m Kr m N    , (2)

holds, then the impulsive delayed discrete system
(1) is said to be exponentially stable and r is called the
exponential convergence rate of the impulsive delayed
discrete system (1), the impulsive delayed discrete sys-
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tem (1) is said to be global exponentially stable if (2)

holds for any    , , 0nx m R m N    .

Lemma 1
[25](Discrete-time Halanay-type Inequality) Sup-

pose that the real numbers sequence  n n h



 satisfied

     1, , , , , 1 , 0,1n n n n n hg n n N     
 

     ,

if there exists a  0,  such that

 
   

,
max , 0n n i

i N n h n
n N   

 
      .

Then, there exists a  0,1 such that

 
   

,0
max , 0n

n i
i N h

n N  
 

    , (3)

where   1: 0 hg N R R
  ,  1 0, , ,h h  

  
  is the initial con-

dition,  0h N  is a constant and  is the smallest root in

the interval  0,1 of the following equation,

 1 1 0h h   
    .

We have the following lemma from lemma 1.

Lemma 2

Suppose that the real numbers sequence   0n n




satisfied

     , , 1 , 0,1n n ng n n N        ,

if there exists a  0,  such that

   , 0n n n N         .

Then, there exists a  1 0,1      such that

 0 , 0n
n n N      .

MAIN RESULTS

In this section, we consider the global stability of
impulsive Hopfield neural networks with multiple de-
lays (1). First, we will apply the discrete Halanay in-
equality to the following no-impulsive Hopfield neural
networks with multiple delays,
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(4)

For the global exponential stability of the no-impul-
sive Hopfield neural networks with multiple delays (4),

we have the following result.

Theorem 1

If the following inequality holds,
1a   , (5)

Where
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max i
i N n

a a


 , 
 1,

1

max
n

ij j
i N n

j
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 .

Then, the no-impulsive Hopfield neural networks
with multiple delays (4) is global exponentially stable.

Proof

Let the solution of the discrete system (4) be   x m ,

we have
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it is clear that,

   , 1,i mx m d i N n  as  , 0m N   .

At  1m N , we obtain
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md .

Thus, for any  m N   , the following inequality
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   , 1,i mx m d i N n  , (6)

holds.
Since

1m m md d d


  

=  
   

  
, 1,

1 max maxm j
t N m m j N n

a d x t



  

  

 
 

   
,

1 max , 1m t
t N m m

a d d m N



 

      ,

It follows from (5) and Lemma1 that there exists

a  0,1  such that

 
   

,0
max , 0m

m t
t N

d d m N



 

    .

By (6), we have

 
 

    
1,

max ,i m
i N n

x m x m d m N 
 
     .

Let
   

   ,0 1,
max max i

t N i N n
K x t

  
 , the following inequal-

ity holds,

   , 0mx m K m N

   .

According to Definition3, it can be seen that the
no-impulsive Hopfield neural networks with multiple de-
lays (4) is global exponentially stable, attenuation rate

is the smallest root in the interval  0,1 of the following

equation,
1 0a   
   ,

And this completes the proof of the theorem.
We consider the following no-impulsive Hopfield

neural networks without,
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We have the following corollary for it�s the global
exponentially stability.

Corollary 1

If the following inequality holds,
1a   ,

Where
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i N n
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 .

Then, the Hopfield neural networks without impulse
and delays (7) is global exponentially stable.

Proof

Let the solution of the discrete system (7) be   x m ,

we have
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At  1m N , we obtain
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Thus, for any  0m N , the following inequality

   , 1,i mx m d i N n  ,

holds.
Since

1m m md d d


  

=  
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1 maxm j
j N n
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   1 , 0m ma d d m N      ,

From Lemma2, we have

   0 , 0
m

md a d m N     .

And
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    .

Let 
 

 0
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max i
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K x


 , the following inequality holds,

     , 0
m

x m K a m N

    .

According to Definition3, it can be seen that the
no-impulsive Hopfield neural networks without delays
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(7) is global exponentially stable, attenuation
rate    , and this completes the proof of the theo-
rem.

Now, we will establish global exponentially stable
criterion for the impulsive Hopfield neural networks with
multiple delays (1).

Theorem 2

If the following two inequalities hold,
1a   , (8)

And

 
0

ln 1 ln 0
k

j
j

l k a


   , for any  0k N , (9)
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Then, the impulsive Hopfield neural networks with
multiple delays (1) is global exponentially stable.

Proof

For any  1m N , without loss of generality, let

 1,k km N N


 and then we obtain that
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Using above iteratively, we have
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By (9), we obtain
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Then, the rest of the proof follows readily from simi-
lar arguments as those given for the proof of Theorem
1.

We consider the following impulsive Hopfield neu-
ral networks without delays,
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We have the following corollary for it�s the global
exponentially stability.

Corollary 2

If the following two inequalities hold,
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Then, the impulsive Hopfield neural networks with-
out delays (11) is global exponentially stable.

Proof

For any  1m N , without loss of generality, let
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Then, the rest of the proof follows readily from simi-
lar arguments as those given for the proof of Theorem
1.

Now, we give two other sufficient conditions for
the global exponentially stable of impulsive Hopfield
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neural networks with multiple delays (1).

Theorem 3

If the following inequality holds,
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Then, the impulsive Hopfield neural networks with
multiple delays (1) is global exponentially stable.

Proof

For any  1m N , without loss of generality, let
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 and then we obtain that
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Using above iteratively, we have
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From (12), the following inequality holds,
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Then, the rest of the proof follows readily from
similar arguments as those given for the proof of
Theorem 1.

Theorem 4

If the following inequality holds,
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Then, the impulsive Hopfield neural networks
with multiple delays (1) is global exponentially stable.

Proof

For any  1m N , without loss of generality, let

 1,k km N N
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Using above iteratively, we have
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From (13), the following inequality holds,
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Then, the rest of the proof follows readily from
similar arguments as those given for the proof of
Theorem 1.

NUMERICAL EXAMPLE

In this section, a numerical example is presented to

verify and illustrate the usefulness of our main results.
Consider no-impulsive Hopfield neural networks with
multiple delays with the following specifications:
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Therefore, from corollary 1, the Hopfield neural
networks without impulse and delays (14) is the global

exponential stability and attenuation rate
5

6
    as

1

6
  . It�s state sequence chart with 0.125  is shown

in Figures 1.

Figure 1 : The state sequence chart of (14) without impulse
and delays as 0.125  .
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From Theorem 1, no-impulsive Hopfield neural
networks with multiple delays (14) is the global
asymptotical stability and global exponential stability and

attenuation rate
1

0.25(1 1 16 )
3
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  . The

state sequence chart of (14) with 0.125  is shown in
Figures 2.

Where 1 03, 4k kN N N
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We can compute that
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Therefore, from Theorem 2 and corollary 2, it is
clear that the impulsive Hopfield neural networks with
multiple delays (14) and the impulsive Hopfield neural
networks without delays (14) are the global asymptotical

stability and global exponential stability as
1

6
  . Their

state sequence chart under 0.125  are shown in
Figures 3 and Figures 4.

Figure 2 : The state sequence chart of (14) without impulse as
0.125  .

Now, we consider (14) with the following impulsive
law,
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Figure 3 : The state sequence chart of impulsive system (14)
without delays as 0.125  .

Figure 4 : The state sequence chart of impulsive system (14)
as 0.125  .

CONCLUSION

We studied the global stability problems of impulsive
Hopfield neural networks with multiple delays. Several
sufficient conditions for global exponential stability and
global asymptotical stability of impulsive Hopfield neural
networks with multiple delays are derived based on the
Lyapunov stability theory and discrete-time Halanay-
type inequality technique respectively. Finally, a
numerical example was given to show the effectiveness
of our results.
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