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ABSTRACT

In this paper, a continuum mathematical model of Glioblastomaneurologi-
cal diffusion has been developed in order to identify and characterize dis-
crete cellular mechanisms underlying altered cellsmotility. The mathemati-
cal model hasbeen treated by two different methods: Finite Element Method
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(FEM) and Boubaker polynomial expansion scheme (BPES). The Finite
Element M ethod has been emphasized asa platform for discretization of a
basi c parabolic equation using variational analyses and Fourier transform.
The same parabolic model has been subjected to the Boubaker polynomial
expansion scheme analysesin order to monitor the evol ution of tumor from
the non-vascular stage to the vascular one. Obtained results have been
successfully compared to some recently proposed profiles.
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INTRODUCTION

Gliomasarehighly diffusebrain tumorsthat grow
by invading adjacent tissues*2"28, They occur inthe
brain by dtration of glid cdlswhich aresupport cdlsof
the central nervous system.

Whileglial cellscan belongto severa familiesof
cells, most gliomas are made up of either oligoden-
drocytes or astrocytes, thus, these tumors are also
frequently called Oligiodendrogliomas or Astrocyto-
mas, respectively.

High grade (malignant) formsof thesegliomasare
caled GlioblastomaM ultioforme (GBM), Angpdastic
Asdtrocytoma, and Anaplastic Oligodendroglioma. They

are considered fast growing, rapidly invading nearby
tissue(Figurel).
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Figurel: Brain tumorsclasification scheme
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Secondary tumorsare often methastasia formsap-
pearing consequently to cancer proliferation gartingfrom
other parts of the body, while primary tumorsstartin
branandremaininsideit.

GlioblastomaMultioforme(GBM) isthemost com-
mon malignant brain tumor in adults. It
infiltrate to healthy brain tissue (mostly white matter),
grow very fast by forming a necrotic core and making
apaale network of blood vessels for feeding purpose,
which causesedema and brain tissue deformation.

Oneof thefundamentd difficultiesintreatingglio-
masistheir ability toinfiltrate healthy tissue beyond ini-
tial tumor boundary. Dueto thisparticul arity, radical
resection of gliomasrarely succeeds. Meanwhile, con-
sidering the mathematical modeling would be neces-
sary for comparison, observation, specul ation and de-
velopment of hypothesesto betested along with refer-
encesto well-established mathestica functions. These
mathematica investigations, iteratively compared with
experimental and clinica work, demonstratethe essen-
tial experiment-theorey interaction.

Inthispaper, weprovide, inthe context of thenotes
of Nieder® and Chicoine et al.l'% two resolution
protocol under the same model of Glioblastoma
Multioforme(GBM) diffusion.

Themodel presentsasupply toworksgiving evi-
denceto ability of agiventrestment toidentify and seek
out, inagiven region and at agiven time, tumor than
hedthy rather cellslocii.

PROBLEM FORMALIZATION

Theearliest mathematical formulation of thegrowth
of GlioblastomaM ultioforme (GBM) hasbeenwaspro-
vided by Murray et al.?? inthe early 1990s, and con-
firmed later by Swanson et al 3334, The formulated
problem cons sted of aconservation equation under the
assumption of classical gradient-driven Fickian diffu-
sion®¥ and considering higher matility inwhite matter
thanin grey matter’®33, Themodel can bewritten as
follows

2
ou(x,t) _ D(X)a u(>;,t)
ot ox
where u(x,t) designatesthetumor cell density at loca-
tion x and timet, p denotesthe net proliferation rate,

and D(x) isthediffusion coefficient (D(X) = D, ingrey

+pu(x,t) €))
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matter and D(x) = D, in white matter, with D ;<02
D.)

Boundary conditionsimposeno migration of cells
beyond physica boundary andinitid conditionsaregov-
erned by the equation:
u(x,t)|,_o = Uo 2
whereu, istheinitial spatial distribution of malignant
cdls

Several modelsand sol ution have been proposed
inthelast decadegd?31617.2023  sharing the basic form
of thereaction-diffusion:

Diffysion Proliferation  Treatment
—— —

ou o
E=d|v(DVu)+ f(u) - T(u) ©)

I5Vu.ﬁ(7Q =0 (Boundary conditions)

wherep isthediffusion tensor.

Despitethe multitudeformsall ocated to thetreat-
ment term T (u) (depending on thetreatment procedure;
chemicd, thermd, ultrasound. . .), the proliferation term
existsunder threemain formulations (Linear (pu), Lo-

gistic (PU(l—%max)) and Gompertz (puLﬂ(um% )
laws)

SOLUTIONUSING FINITE ELEMENT
METHOD (FEM)

Inthissection, we consder diffuson of tumor cdlls,
for arepresentativeclassof one-dimensiona problems.
Themainamisto present theana ytical and numerica
solution of Eq. (1). For thispurpose wefirst derivethe
and ytica solution of proposed equationin one-dimen-
siona space. The numerical procedure based onfinite
element method isdevel oped.

Wefirst writethe associated mathematical time-
dependent differentia equation. Initid diffusion equa
tion of tumor cellsinthebrainis:

du(x,t) __ d’u(xt)

a =D o’ +pu(x,t), xe[O,l]
n.vu(x,t) =0, on aQ @)
u(x,t)[_, = o, x e[01]
with:

AQ : Domainboundary (Thedomainisdenoted Q
n - Unitary vector (normal to thedomain boundary
oQ).
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u, : Initia spatia concentrationof malignant cells,

Thesolutionisgivenby u(x,t) satifying Eq. (4) with
boundary conditionimposing zero flux of cellsat the
brain boundariesandinitial condition. The boundary
condition simply requiresthat gliomacellsarenot al-
lowed to migrate outside of the humantissue.

Assume that the tumor has grown to about 4000
cellsasalocal mass before it beginsto diffuse. We
used the growth rate p ~ 0.012/day*3*4 and diffusion
coefficient D ~0.0013 cm2 /day in the model as sug-
gested for high-grade gliomas®¥. The comparison be-
tween analytical and numerical resultsarederived to
assess numerically the accuracy and stability of the
method%24,

Resolution protocol startsfrom integrating by parts
theweighted integral of Eq. (4), which gives:.

j[o,l](ut -V(DVu)-pu)vdx=0 )
foral weightingfunctionv. It gives.

f[o,l](ut“ (DVU)Vv—puv)dx—[_ (i.(DVu)v)ds=0 (g)
and:

I:(u'v +(Du,v,)-puv)dx - Duxv|: =0 )
Then, using the supplementary conditionsUsing v(0) =
Oandv(1) =0, theremaining variationa problemisto
find u(x,t) which satifiestheinitid dataand main bound-
ary condition, such that:

jol(utv+(Duxvx)—puv)dx =0 (8)

For thispurposg, |et’s consider Let A, thefiniteelement
discretization of thedomain and ' thefinite element
bas ssothat thefinite e ement expang on hastheform:

006 = Y, (¥, (9 ©
j=1

Setting ¢, forcand v, =¥, for v givesthe semidiscrete
system of ordinary differential equationsof theform:

d

MEC+KC—PC=F (10)

Finally, this system is integrated using badcward
differencing of u and Fourier transform. It gives:

& (- RN

u(x,t)=ZAe sin(n+%)ux (1)

SOLUTIONUSING THE BPES

The B PESIA—Q,12—15,18,19,21,22,29,30,34,36] iS appl | w to Eq

(4) through setting the expression:
1

No
2 Ay xBy (xr)e "

0 k=1

u(x,t)= (12)

where B,, arethe4k-order Boubaker polynomials, x
€ [0,1] isthenormalized variable, r _are B, minimal
positiveroots, N, isaprefixed integer, M|k.1..N0 and
@y |k_1“N0 areunknown ponderingred coefficients. Con-
sequently, it comesfor Eq. (4) that:

_wk S —wt
5 DA xBy (X1 )e " =
0 k=1
D & d’B,, (xr,)
2‘ I,2 4K Kk e*mkt_ 13
2N0é k' k dX2 ( )
p S —wt
A xB, (xr,)e " =0
2N, kzd k ak \ATy
smplifiedto:
< S 2 dZB4k (xrk)
_(mk +P)ZM xB 4 (er)_DZA’krk 2 =0(14)

k=1 k=1
The BPES protocol ensuresthevaidity of therelated
boundary conditions expressed through Eq. (4), regard-
lessmain equation features. Infact, thanksto Boubaker
polynomidsfirst derivatives properties:

i N
D Bu(X) =-2N=#0
q=1 x=0
1w (15)
z B4q (X) = O!
\q:l x=rq
and:
ZN: dB,,(X) 0o
g=1 dx x=0
N dB,, (X) N
1z =2 Hq (16)
a1 dx xerg 0L
4rn[2_ I’nz]xz Bzzlq (rn)
with:H, =B, (r,)= = +4r?
BA(n+1)(rn)

boundary conditionsareinherently verified.
The BPES solutionisobtained through four steps:
- Integrating, for agivenvaueof N, thewhole ex-
pression given by Eq. (13) dongtheinterva [0,1].

- Determining the set of coefficients M and

k=1..Ng
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@]y, thet minimizestheabsolutedifference A, :

Ay, =

0

( L 7 p| L $%
— +p) — Ay |- A,
Wy +p 2N0k2:1 K X 2N0k2:1 k X g
with :
1
Ay :J.B4k (xr, )dx
0
L ,d%B, (xr,)
Ar — r.2 4k k dX
: Ik dx?

0

- Incrementing N,

- Testingtheconvergenceof the coefficients A k‘

k=1.Ng

and Ejk|k-1..No .
Thefinal resultishence (for N, =29):

1 No- ~
2 Ay x By (xr )e ™

0 k=1

u(x,t)=

(17)

RESULTSAND DISCUSSION

In this section to examine the ability of the pro-
posed numerica procedures, atest caseproblemisin-
vestigated. TABLE 1 showstheparametersvaues. Fg-
ures 2 and 3 show the plotsof numerica solutions.

TABLE 1: Main parametersvalues

Par ameter Figure 1l Figure 2
Mesh points 20 20
D Dy Dy
p 0.0012 0.0012
No 29 33
c(0, t) 0 0
(1, 1) 0 0
Co 4000 4000

u(x,f)

Time ¢ 5 L — 0w Distance x
0 o

Figure?2: Solution patter nsin whitematter
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T :BPES

—T—x=0.4

D2 Distance x

0 o
Figure3: Solution patternsin grey matter

Results have been obtained for parametersvalues
gatheredinTABLE 1.

First, it can be noted that the starting profileisthe
samefor thetwo cases. Thisisconform to the adopted
presumptions (sameinitial and boundary conditions).
Time-dependent evolutionsarein good agreement with
thedatagivenin §2 about higher motility in white than in
grey matter, asrecorded earlier by Swanson et al 13334,

Infact, itisnoticed that, during thesameperiod, the
first time-dependent profil e decreasesdown to approxi-
matdy 40% at the coreregion, whilethesecondisquite
unaltered along thedomain Q. Inertiaof grey matter in
termsof cellsdiffus on seemsto be preponderant.

Furthermore, results obtained using both methods
performed agood concordance. Error analysis(Figure
4) showed amaximum relative quadratic error (mean
quadratic difference between the results) of around
4.5% for the sampled data (x = 0.2 and x =0.4).

e rx=02
5.0
—a—x=10.4
45
5 4.0 e /hﬁév
E — " / /
a5 W N X,,fv/
h
3.0 4
0 2 A 8 8 10

f
Figure4: Relativequadraticerror

Evolution timerange could a so be satisfactorily
compared to that recorded in the few last years by
Steinet al.[® intermsof braintumorsradii. Accurate
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calculation of thisrange could present agood supply
to prediction of lifespan or tumor’s response to even-
tual treatments.

CONCLUSION

We have presented sol utionsto theexpansion-dis-
persion equaion governing GlioblastomaMultiformetu-
mor growing. Wedeve oped acontinuum mode which
describesinvasionusing threemain parameters. theun-
biased matility, D, themedium nature (white/grey mat-
ter) and theproliferation rate, p.

We focused on amathematical model describing
gliomacdIsintringcdiffusoninasenceof any chemo-
therapy or radiotherapy treatment. Thefinite element
method FEM and the Boubaker polynomia expansion
scheme BPES have s been applied to the proposed
equation. Anaytica investigationsperformedin onedi-
mensionillustrated the efficiency and convergence of
the two methods and revealed some patterns of the
solution behavior rel ated to the medium.

Insummary, we have shown how ana ytica math-
ematical models can be used to gain a better under-
standing of the parametersthat effect braintumor diffu-
sion and prognosisimprovement for patientswho are
diagnosed with Glioblastoma. Future studieswill bedi-
rected toward thesolution of two-dimensiona version
of the problem associated with chemotherapy and ra-
diotherapy, namely by inserting standardized therapy-
governed losstermsinthe main equation.
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