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KEYWORDSABSTRACT

In this paper, a continuum mathematical model of Glioblastoma neurologi-
cal diffusion has been developed in order to identify and characterize dis-
crete cellular mechanisms underlying altered cells motility. The mathemati-
cal model has been treated by two different methods: Finite Element Method
(FEM) and Boubaker polynomial expansion scheme (BPES). The Finite
Element Method has been emphasized as a platform for discretization of a
basic parabolic equation using variational analyses and Fourier transform.
The same parabolic model has been subjected to the Boubaker polynomial
expansion scheme analyses in order to monitor the evolution of tumor from
the non-vascular stage to the vascular one. Obtained results have been
successfully compared to some recently proposed profiles.
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INTRODUCTION

Gliomas are highly diffuse brain tumors that grow
by invading adjacent tissues[11,27,28]. They occur in the
brain by altration of glial cells which are support cells of
the central nervous system.

While glial cells can belong to several families of
cells, most gliomas are made up of either oligoden-
drocytes or astrocytes, thus, these tumors are also
frequently called Oligiodendrogliomas or Astrocyto-
mas, respectively.

High grade (malignant) forms of these gliomas are
called Glioblastoma Multioforme (GBM), Anapalastic
Astrocytoma, and Anaplastic Oligodendroglioma. They

are considered fast growing, rapidly invading nearby
tissue (Figure 1).

Figure 1 : Brain tumors clasification scheme
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Secondary tumors are often methastasial forms ap-
pearing consequently to cancer proliferation starting from
other parts of the body, while primary tumors start in
brain and remain inside it.

Glioblastoma Multioforme (GBM) is the most com-
mon malignant brain tumor in adults. It
infiltrate to healthy brain tissue (mostly white matter),

grow very fast by forming a necrotic core and making

a parallel network of blood vessels for feeding purpose,

which causes edema and brain tissue deformation.

One of the fundamental difficulties in treating glio-
mas is their ability to infiltrate healthy tissue beyond ini-
tial tumor boundary. Due to this particularity, radical
resection of gliomas rarely succeeds. Meanwhile, con-
sidering the mathematical modeling would be neces-
sary for comparison, observation, speculation and de-
velopment of hypotheses to be tested along with refer-
ences to well-established matheatical functions. These
mathematical investigations, iteratively compared with
experimental and clinical work, demonstrate the essen-
tial experiment-theorey interaction.

In this paper, we provide, in the context of the notes
of Nieder[25] and Chicoine et al.[10], two resolution
protocol under the same model of Glioblastoma
Multioforme (GBM) diffusion.

The model presents a supply to works giving evi-
dence to ability of a given treatment to identify and seek
out, in a given region and at a given time, tumor than
healthy rather cells locii.

PROBLEM FORMALIZATION

The earliest mathematical formulation of the growth
of Glioblastoma Multioforme (GBM) has been was pro-
vided by Murray et al.[24] in the early 1990s, and con-
firmed later by Swanson et al.[33,34]. The formulated
problem consisted of a conservation equation under the
assumption of classical gradient-driven Fickian diffu-
sion[33] and considering higher motility in white matter
than in grey matter[32,33]. The model can be written as
follows:
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where u(x,t) designates the tumor cell density at loca-
tion x and time t, ñ denotes the net proliferation rate,
and D(x) is the diffusion coefficient (D(x) = D

g
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w
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Boundary conditions impose no migration of cells

beyond physical boundary and initial conditions are gov-
erned by the equation:
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where u
0 is the initial spatial distribution of malignant

cells.
Several models and solution have been proposed

in the last decades[2,3,16,17,20-23], sharing the basic form
of the reaction-diffusion:
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where D
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 is the diffusion tensor..
Despite the multitude forms allocated to the treat-

ment term T(u) (depending on the treatment procedure:
chemical, thermal, ultrasound�), the proliferation term

exists under three main formulations (Linear (u), Lo-

gistic ( )u
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SOLUTION USING FINITE ELEMENT
METHOD (FEM)

In this section, we consider diffusion of tumor cells,
for a representative class of one-dimensional problems.
The main aim is to present the analytical and numerical
solution of Eq. (1). For this purpose we first derive the
analytical solution of proposed equation in one-dimen-
sional space. The numerical procedure based on finite
element method is developed.

We first write the associated mathematical time-
dependent differential equation. Initial diffusion equa-
tion of tumor cells in the brain is:
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with:
 : Domain boundary (The domain is denoted 

n : Unitary vector (normal to the domain boundary
).
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u
0

: Initial spatial concentration of malignant cells.
The solution is given by u(x,t) satisfying Eq. (4) with

boundary condition imposing zero flux of cells at the
brain boundaries and initial condition. The boundary
condition simply requires that glioma cells are not al-
lowed to migrate outside of the human tissue.

Assume that the tumor has grown to about 4000
cells as a local mass before it begins to diffuse. We
used the growth rate ñ  0.012/day[33,34] and diffusion
coefficient D � 0.0013 cm2 /day in the model as sug-

gested for high-grade gliomas[34]. The comparison be-
tween analytical and numerical results are derived to
assess numerically the accuracy and stability of the
method[10,24].

Resolution protocol starts from integrating by parts
the weighted integral of Eq. (4), which gives:
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Then, using the supplementary conditions Using í(0) =
0 and í(1) = 0, the remaining variational problem is to
find u(x,t) which satisfies the initial data and main bound-
ary condition, such that:
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For this purpose, let�s consider Let 
h
 the finite element

discretization of the domain and 
j
 the finite element

basis so that the finite element expansion has the form:
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 for  gives the semidiscrete

system of ordinary differential equations of the form:

FPCKCC
dt
d

M  (10)

Finally, this system is integrated using badcward
differencing of u  and Fourier transform. It gives:
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SOLUTION USING THE BPES

The BPES[1,4-9,12-15,18,19,21,22,29,30,34,36] is applied to Eq.

(4) through setting the expression:
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where B
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 are the 4k-order Boubaker polynomials, x
 [0,1] is the normalized variable, r
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are unknown pondering real coefficients. Con-

sequently, it comes for Eq. (4) that:
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simplified to:

  



0N

1k
2

kk4
2

2
kk

0N

1k
kk4kk 0

dx

)xr(Bd
rD)xr(B (14)

The BPES protocol ensures the validity of the related
boundary conditions expressed through Eq. (4), regard-
less main equation features. In fact, thanks to Boubaker
polynomials first derivatives properties:
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boundary conditions are inherently verified.
The BPES solution is obtained through four steps:

 - Integrating, for a given value of N
0
, the whole ex-

pression given by Eq. (13) along the interval [0,1].

 - Determining the set of coefficients 
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The final result is hence (for N
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RESULTS AND DISCUSSION

In this section to examine the ability of the pro-
posed numerical procedures, a test case problem is in-
vestigated. TABLE 1 shows the parameters values. Fig-
ures 2 and 3 show the plots of numerical solutions.

Results have been obtained for parameters values
gathered in TABLE 1.

First, it can be noted that the starting profile is the
same for the two cases. This is conform to the adopted
presumptions (same initial and boundary conditions).
Time-dependent evolutions are in good agreement with
the data given in §2 about higher motility in white than in

grey matter, as recorded earlier by Swanson et al.[33,34].
In fact, it is noticed that, during the same period, the

first time-dependent profile decreases down to approxi-
mately 40% at the core region, while the second is quite
unaltered along the domain . Inertia of grey matter in
terms of cells diffusion seems to be preponderant.

Furthermore, results obtained using both methods
performed a good concordance. Error analysis (Figure
4) showed a maximum relative quadratic error (mean
quadratic difference between the results) of around
4.5% for the sampled data (x = 0.2 and x =0.4).

TABLE 1 : Main parameters values

Parameter Figure 1 Figure 2 

Mesh points 20 20 

D Dw Dg 

ñ 0.0012 0.0012 

N0 29 33 

c(0, t) 0 0 

cx(1, t) 0 0 

c0 4000 4000 

Figure 2 : Solution patterns in white matter

Figure 3 : Solution patterns in grey matter

Figure 4 : Relative quadratic error

Evolution time range could also be satisfactorily
compared to that recorded in the few last years by
Stein et al.[25] in terms of brain tumors radii. Accurate
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calculation of this range could present a good supply
to prediction of lifespan or tumor�s response to even-

tual treatments.

CONCLUSION

We have presented solutions to the expansion-dis-
persion equation governing Glioblastoma Multiforme tu-
mor growing. We developed a continuum model which
describes invasion using three main parameters: the un-
biased motility, D, the medium nature (white/grey mat-
ter) and the proliferation rate, ñ.

We focused on a mathematical model describing
glioma cells intrinsic diffusion in absence of any chemo-
therapy or radiotherapy treatment. The finite element
method FEM and the Boubaker polynomial expansion
scheme BPES have s been applied to the proposed
equation. Analytical investigations performed in one di-
mension illustrated the efficiency and convergence of
the two methods and revealed some patterns of the
solution behavior related to the medium.

In summary, we have shown how analytical math-
ematical models can be used to gain a better under-
standing of the parameters that effect brain tumor diffu-
sion and prognosis improvement for patients who are
diagnosed with Glioblastoma. Future studies will be di-
rected toward the solution of two-dimensional version
of the problem associated with chemotherapy and ra-
diotherapy, namely by inserting standardized therapy-
governed loss terms in the main equation.
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