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ABSTRACT 

Ultraspherical polynomials (x)C υ
n (Gegenbaur polynomials) are one of the most important 

families of orthogonal polynomials in mathematical chemistry, mathematical physics, probability theory, 
differential equations, combinatorics etc. One of the simplest ways to construct them is through their 

generating functions. In this paper, the generating functions for ultraspherical polynomials (x)C υ
n are 

obtained by using the Truesdell’s method giving a suitable interpretation to the index n. Further, a pair of 
linearly independent differential recurrence relations are used in order to derive generating functions          

for (x).C υ
n The principal interest in our results lies in the fact that, how the Truesdell’s method is utilized 

in an effective and suitable way to Gegenbaur polynomials in order to derive two generating functions 
independently from ascending and descending recurrence relations, respectively. The generating functions, 
in turn yield, the Legendre polynomials as special case for .2

1υ =  The results are well known in the  

theory of special functions. Mathematics Subject Classification (2010): Primary 33C10, secondary 33C45, 
33C80. 
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INTRODUCTION 

Generating functions play an important role in the investigation of various useful 
properties of the sequences, which they generate. They are used with good effect for the 
determination of the asymptotic behavior of the generated sequence { }∞=0nnf as n → ∞. In 
recent years, the development of advanced computers has made it necessary to study the 
hypergeometric polynomials with series representations from the numerical point of view1. 
Because of the important role which hypergeometric polynomials play important role in 
problems of applied mathematics, the theory of generating functions has been developed 
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various directions and found wide applications in different branches of science and 
technology. 

Many authors2-7 studied the generating functions for the generalized hypergeometric 
polynomials by various methods. The generalized hypergeometric polynomials have many 
applications in different branches of analysis, such as harmonic analysis, quantum physics, 
molecular chemistry, number theory etc. A few of them, for example, the ultraspherical 
polynomials appear naturally as extensions of Legendre polynomials in the content of 
potential theory and harmonic analysis. The Newtonian potential in Rn has the expansion, 
valid with υ = (n – 2)/2, 

y)(x,C
y

x
yx
1 υ

kn,2nk

k

2n −+− =
−

 

Also, in the study of oscillations and waves, sine and cosine functions play a central 
role. They come from the solutions of the wave (Helmholtz) equation in cartesian 
coordinates with the appropriate boundary conditions. They also form a basis for 
representing general waves and oscillations of various types, shapes and sizes. They are very 
useful in cosmology and quantum field theory in curved backgrounds. Further, we found the 
application of ultraspherical polynomials in vibrational calculations in the structure of the 

2HCa+
−  exciplex, in the state correlated with 3D calcium ion state. For this ultraspherical 

polynomials are used for formation of a basis set for a bending mode. Ultraspherical 
polynomial expansions are used to mitigate Gibb’s phenomenon Fourier-Bessel series 
solutions of a dynamic sphere problem. Also, these orthogonal polynomials are of great 
importance in approximation theory, physics and the mathematical theory of mechanical 
quadratures etc. 

The aim of present paper is to derive the generating functions for the ultraspherical 
polynomials by using the Truesdell’s method, giving suitable interpretation to the index n. It 
is worth recalling that this method yields two generating functions for the ultraspherical 
polynomials, independently from ascending and descending recurrence relations, where as 
the simultaneous use of these recurrence relations in other group theoretic methods. The 
results obtained for ultraspherical polynomials are well known in the theory of special 
functions8,9. 

Definition  

The ultraspherical polynomials10 can be defined interms of the recurrence relations : 
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,1(x)C υ
0 =  

xυ2(x)C υ
1 =  

and [ ](x)C2)2υ(n(x)C1)υ(n2x2
1(x)C υ

2n
υ

1n
υ
n −− −+−−+=   …(1) 

In order to obtain generating functions for the set, we begin with two in independent 
(descending and ascending) recurrence relations satisfied by each element of this set: 

 [ ](x)Cxn(x)Cn)1(2υ
)x(1

1(x)CD υ
n

υ
1n2

υ
n −+−

−
= −    …(2)  

 and  

 [ ](x)Cn)x(2υ(x)C1)(n
)x(1

1(x)CD υ
n

υ
1n2

υ
n +++−

−
= +  …(3)  

These two independent differential recurrence relations determine the linear ordinary 
differential equation – 

0(x)n)Cn(2υ(x)1)xDC(2υ(x)C)Dx(1 υ
n

υ
n

υ
n

22 =+++−−  

 where  dx
dD ≡  …(4)  

The proofs of these results are obvious. 

Moreover, the following is the representation of ultraspherical polynomials in terms 
of Jacobi polynomials7: 

(x)P

2
1υ

)υ(2(x)C 2
1υ,

2
1υ

n

n

nυ
n

⎟
⎠
⎞

⎜
⎝
⎛ −−

⎟
⎠
⎞

⎜
⎝
⎛ +

=  

Generating function derived from the ascending recurrence relation 

We shall use the Truesdell’s F-equation11a  

 1)αF(z,α)F(z,
z

+=
∂
∂  …(5) 
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to find a generating function for the set of polynomials (x)C υ
nα+  as follows : 

The polynomial (x)C υ
n  satisfies the ascending recurrence relation – 

 [ ] [ ](x)Cn)x(2υ(x)1)C(n
)x(1

1(x)C
dx
d υ

n
υ

1n2
υ
n +++−

−
= +  …(6) 

Let  (x)Cα)f(y, υ
n= , so that we have 

                    α)]f(y,α)y(2υ1)α1)f(y,(α[
y1

1α)f(y,
y 2 ++++−

−
=

∂
∂  …(7) 

This equation is called the f-type equation and can be written as – 

          1)αα)f(y,B(y,α)α)f(y,A(y,α)f(y,
y

++=
∂
∂  

With     2y1
α)y(2υα)A(y,

−
+

=  and 2y1
1)(αα)B(y,

−
+−

=  

We shall transform α)f(y,  into α)g(y, so that – 

                       1)αg(y,α)C(y,α)g(y,
y

+=
∂
∂  

Let    α)f(y,dθα),A(θexpα)g(y,
y

0y ⎭⎬
⎫

⎩⎨
⎧ −= ∫  

   
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

−
+−

= ∫ y

0y 2 dθ
θ1
α)θ(2υexpα)f(y,  

   
⎟
⎠
⎞

⎜
⎝
⎛ +−+

−−= 2
αυ

2
0

2
αυ2 1)(y1)α)(yf(y,  

Now, if we write μy0 = , then we get 

 α)f(y,1)(y1)(μα)g(y, 2
αυ22

αυ
2 +⎟

⎠
⎞

⎜
⎝
⎛ +−

−−=    …(8) 
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It can be easily verified that this satisfies g-type equation 

 1)αf(y,1)1)(y(α1)(μα)g(y,
y

1
2
αυ22

αυ2 +−+−=
∂
∂ −+−−

  …(9) 

Let α)C(y,  denote the factorable coefficient of 1)αg(y, +  in (9), then 

                         2
3

22
1

2 1)(y1)(μ1)(αα)C(y,
−

−−+=  

with ,)Y(y)A(αα)C(y, =  

where 2
1

2 1)(μ1)(α)A(α −+= and 2
3

2 1)(yY(y)
−

−=  

We effect the transformation of α)g(y, into α)F(z,  by letting 

             ∫
−

+
−

−
==

y

1y 2
1

1
2 1y

y

1y

yduy(u)z  

and       
⎭⎬
⎫

⎩⎨
⎧= ∫

α

0α
0 ΔxlogA(x)expα)g(y,α)F(z,F  

On choosing 1α0 −= , we get 

∫ − ⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

−+
α

1
2
1

2 Δx1)(μ1)(xlog ∫ ∫− −
−++=

α

1

α

1
2
1

2 Δx1)(μlogΔx1)(xlog  

Since ∫ −=
x

0
2πlogΓ(x)logΔzz log  

                              
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−+

=
+

2π
1)(μ1)Γ(αlog

1)(α
2
1

2

 

This implies 

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡ −+=
+

2π
1)(μ1)(αΓlogexpα)g(y,α)F(z,F

1)(α2
1

2

0  
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Further, if we choose 0y1 = , 1α0 −=  and 
2π
1F0 =  

we get                  ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

−
−−+=

+
α,

1z
zg1)(μ1)Γ(αα)F(z,

2

1)(α2
1

2  

To show that α)F(z,  does indeed satisfy the F-equation we determine α)F(z,z∂
∂  as 

follows : 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
,

−
−

∂
∂−+=∂

∂ +
α

1z
zgz1)1)(μΓ(αα)F(z,z 2

1)(α2
1

2  

                ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
−

⎥⎦
⎤

⎢⎣
⎡ −

−
−−−++=

−
−+

1α,
1z

zg1
1z

z1)(z1)(μ1)1)(μ1)(αΓ(α
2

2
3

2

2
2

321)(α2
1

22
1

2  

                ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

−
−−++=

++
1α,

1z
zg1)(μ1)1αΓ(

2

1)1α(2
1

2  

                1)αF(z, +=  

Thus, we have – 

1)αF(z,α)F(z,
z

+=
∂
∂  

We express α)F(z,  in the following form – 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

−
−−+=

+
α,

1z
zg1)1)(μΓ(αα)F(z,

2

1)(α2
1

2  

           ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

−
−−−+=

−−+−
α,

1z
zf1)(z1)1)(μΓ(α

2
2
αυ22

1υ2   

           ( ) ⎥
⎦

⎤
⎢
⎣

⎡

−

−
−−+=

−−−−

1z

zC1z1)(μ1)Γ(α
2

υ
α

2
αυ22

1υ2  



Int. J. Chem. Sci.: 13(2), 2015 977

Since  ( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−+
+−−+=+

−−

1y)(z
y)(zC1μ1)Γ(αα)y,F(z
2

υ
α

2
1ν2  

and     ( ) ( ) ⎥
⎦

⎤
⎢
⎣

⎡

−
−−−++=+ +

+−−+−

1z
zC1z1μ1)nΓ(αy)αF(z,

2
υ

nα
n)(α2

1υ22
1υ2  

From Truesdell’s F-equation generating function theorem11b, we get – 

 ∑
∞

=

+=+
0n

n
n)αF(z,n!

yα)y,F(z  …(10) 

It follows that 

                             [ ]
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−+
+−−++

−−

1y)(z
y)(zC1y)(z1)Γ(α
2

υ
α

2
αυ2  

                         ∑
∞

=
+

−−−

⎥
⎦

⎤
⎢
⎣

⎡

−

−
−++=

0n
2

υ
nα

2
n

2
αυ2

n

1z
zC1)(z1)nΓ(α

!n
y  

or    
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−++
−−

⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
++

−−

12zyyz
yzC

1z
2zyy1

22
υ
α

2
αυ

2

2
 

            ∑
∞

=
+

−+
⎥
⎦

⎤
⎢
⎣

⎡

−
−−=

0n

n
2

υ
nα

2
n

2nα
α y

1z
zC1)(z)(  

Replacing 2
1

2 1)(zy
−

−  by  t and 2
1

2 1)(zz
−

−−  by x, we get – 

 2
αυ2 )t2xt(1

−−
+−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

+−

−
2

υ
α

t2xt1
txC nυ

nα
0n

nα
α (t)(x)C)( +

∞

=

+∑=  …(11) 

which is a well-known generating relation for (x)C υ
n  

Generating function derived from the Descending Recurrence Relation 

In a similar manner, we shall use the Truesdell’s G-equation11c 
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 1)α(z,Gα)(z,Gz −=∂
∂  …(12) 

to derive a generating relation for the set of functions (x)C υ
nα−  as follows: 

The Polynomial (x)C υ
n  satisfies the descending recurrence relation  

 [ ](x)Cnx(x)Cn)1(2υ
x1

1(x)Cdx
d υ

n
υ

1n2
υ
n −+−

−
= −  …(13) 

Let (x),Cα)(y,f υ
α=  so that we have 

 α)](y,fαy1)α(y,fα)1[(2υ
y1

1α)f(y,y 2 −−+−
−

=∂
∂  …(14) 

which can be written as – 

 1)αf(y,α)(y,Bα)(y,fα)(y,Aα)(y,fy −+=∂
∂  

with 22 y1
α12υα)(y,B,

y1
yαα)(y,A

−
+−=

−
−=  

Now, we shall transform α)f(y,  into α)(y,g  

so that 1)α(y,gα)(y,Cα)(y,gy −=∂
∂  

Therefore, let us suppose that – 

( )
⎭⎬
⎫

⎩⎨
⎧ −= ∫

y

0y
dθθAexpα)(y,fα)(y,g  

           α)(y,f)y(1)μ(1 2
α

22
α

2 −
−−=  

On choosing μy 0=  

Thus 2
1

22
3

2 )μ(1)y(1α)12υ(α)(y,gy −−+−=∂
∂ −  1)α(y,g −  …(15) 
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Let α)(y,C denote the factorable notation of 1)α(y,g −   

then 2
1

22
3

2 )μ(1)y(1α)1(2υα)(y,C −−+−=
−

 

with 2
3

2)y(1(y)Y
−

−=  and 2
1

2)μ(1α)1(2υ)(αA −+−=  

We effect the transform of  α)(y,g  in α)(z,G  by taking – 

∫=
y

1y
dy(y)Yz  

  
2

1

1
2 y1

y

y1

y

−
−

−
=  

On choosing  0y1 = , it becomes – 

                        
1z

zyor
y1

yz
22 +

=
−

=  

Now       
⎭⎬
⎫

⎩⎨
⎧ −= ∫

+ 1α

0α
dβ)(βAlogexp)h(α  

If we choose  0,α0=  we get 

                          
⎭
⎬
⎫

⎩
⎨
⎧ −+−−= ∫

+
dβ])μ(1}β1[(2υlogexp 2

1
21α

0
 

                          )2υ(αΓ
1)(2υΓ)μ(1

1)(α2
1

2

+
−−=

+−
 

We have .α)(y,g)(αhα)(z,GG0 =   On choosing 1,G0=  it gives that 

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

++
−−=

+−
α,

1z
zg)2υ(αΓ

1)Γ(2υ)μ(1α)(z,G
2

1)α(2
1

2  

Finally, on choosing 0α0,y 01 ==  and 1G0=  we have  

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−+
−−=

+−
α,

1z
zg)2υ(αΓ

1)2υ(Γ)μ(1α)(z,G
2

1)(α
2
1

2  
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To Show that α)(z,G  does indeed satisfy the G-equation we determine α)(z,Gz∂
∂  

as follows: 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

+∂
∂

+
−−=∂

∂ +−
α,

1z
zgz)2υ(αΓ

1)(2υΓ)μ(1α)(z,Gz 2

1)(α2
1

2  

                 
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−

+−+
−−=

−
1α,

1z
zg1)2υ(αΓ

1)(2υΓ)μ(1
2

2
α

2  

     1)α(z,G −=  

It can be easily seen that 

2
α

22
α

2 1)(z)2υ(αΓ
1)Γ(2υ)μ(1α)(z,G ++
−−=

−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

+1z
zC
2

υ
α  

From Truesdell’s G-equation generating function theorem11d, we have 

 n)α(z,G!n
yα)y,(zG

0n

n
−=+ ∑

∞

=

 …(16) 

which implies that  

 [ ]
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

++
++++

−−=+
−

1y)(z
yzC1y)(z)2υ(αΓ

1)2υ(Γ)μ(1α)y,(zG
2

υ
α

2
α

22
1

2  

and 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

+
−−+

−−=− −

−−

1z
zC1)(zn)2υ(αΓ

1)(2υΓ)μ(1n)α,(zG
2

υ
nα

n)(α2
1

22
1

2  

From the theorem, we have – 

( )[ ]
( ) ⎥

⎥
⎦

⎤

⎢
⎢
⎣

⎡

++

+
++

1
1

2
22

yz

yzCyz υ
α

α
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.
1z

zC1)(zn)2υ(αΓ
)2υ(αΓ

!n
y

2
υ

nα
0n

n)(α2
1

2
n

⎥
⎦

⎤
⎢
⎣

⎡

+
−−+

+= −

∞

=

−∑  

Replacing  
1z

z
2 +

  by   x   and  
1z

y
2+

  by t− ,  we get – 

 
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

+−

−+−
2
1

2

υ
α

2
α

2

)t x t2(1
txC)t x t2(1 ∑

∞

=
−

−−=
0n

nυ
nα

n t(x)C!n
)2υα(1  …(17) 

which is the well-known generating relation for (x).C υ
n  
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