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Introduction 

Many important phenomena in physics and engineering, such that fluid dynamics, plasma, chemistry, biology, optical fibers 

have been described with the aid of the nonlinear partial differential equations (PDEs) in mathematical physics. 

Investigations to exact solutions of these nonlinear PDEs will help us to understand these phenomena better. In recent years, 

various effective approaches have been developed to construct the exact solutions of these equations. Therefore, exact 

solution methods of PDEs have become more and more important resulting in methods, such as the Hirota bilinear transform 

method [1] the mapping method [2] the exp-function method [3,4], the sine-cosine method [5,6] the homogeneous balance 

method [7,8] the tanh-sech method [9,10] the extended tanh-coth method [11,12], the )/( GG -expansion method [13-15] 

the modified simple equation method [16-19] the multiple exp-function method [19-21] the first integral method [22,23] the 

soliton ansatz method [24-28] the generalized Kudryashov method [29-31] the general Exp a -function method [32] the 

rational )/( GG -expansion method [33] and so on. 

Abstract 

In this article, two integration tools, namely the generalized Kudryashov method and the general Exp -function method, are 

applied to obtain many new exact solutions, symmetrical hyperbolic Fibonacci function solutions as well as bright, dark and 

singular soliton solutions of the nonlinear Schrödinger equation with fourth-order dispersion and cubic-quintic nonlinearity, self-

steeping and self-frequency shift effects which describes the propagation of an optical pulse in optical fibers. We compare the 

results yielding from these two methods. Also, a comparison between our results in this article and the well-known results are 

given. 
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The objective of this article is to apply the generalized Kudryashov method and the general Exp a -function method for 

obtaining many new exact solutions, symmetrical hyperbolic Fibonacci function solutions as well as bright, dark and singular 

soliton solutions of the following nonlinear Schrödinger equation with fourth-order dispersion and cubic-quintic nonlinearity 

[34-36]: 
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where ),( txuu   is a complex envelop amplitude, t   represents the time (in the group-velocity frame), x   represents the 

distance along the direction of propagation (the longitudinal coordinate), 432 ,,   are respectively representing the group 

velocity dispersion (GVD), the third order dispersion (TOD) and the fourth order dispersion (FOD) while 1  and 2  are the 

cubic and quintic nonlinearities coefficients of the medium. The term proportional to 1 results from the first derivative of 

the slowly varying part of the nonlinear polarization. It is responsible for self-steeping and shock formation at a pulse edge. 

The last term proportional to 2  has its self-frequency shift arising from delayed Raman response, and generally, α2 should 

be complex. When ,021243    Eq. (1) reduces to the well-known nonlinear Schrödinger equation. In 

many cases  22 ReIm    , so we consider the real part of  2   as in [34]. Propagation of ultra-short optical pulses in 

optical fibers is governed by the nonlinear Schrödinger equation with fourth-order dispersion and cubic-quintic nonlinearity 

(1). Eq. (1) has been discussed in [34] by using an auxiliary equation method, in [35] by using the F-expansion method and in 

[36] by using the soliton ansatz method combined with the Jacobi elliptic equation method. 

 

This article is organized as follows: In sections 2 and 3, we describe the generalized Kudryashov method and the general Exp

a -function method. In section 4, we apply these two methods to find many new exact solutions, symmetrical hyperbolic 

Fibonacci function solutions as well as bright, dark and singular soliton solutions of Eq. (1). In section 5, some graphical 

representations of some results are presented. In section 6, some conclusions are illustrated. 

 

Description of the Generalized Kudryashov Method 

Suppose that a nonlinear PDE has the following from: 

 

,0,...),,,,,( xxxtttxt uuuuuuF                                       (2) 

 

where ),( txuu   is an unknown function, F   is a polynomial in u  and its partial derivatives, in which the highest order 

derivatives and nonlinear terms are involved. 

The main steps of the generalized Kudryashov method [29-31] are described as follows: 
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Step 1 

First of all, we use the wave transformation:  

,    ),(),( tkxUtxu                                      (3) 

 

where k  and   are arbitrary constants with  0, k , to reduced equation (2) into a nonlinear ordinary differential 

equation (ODE) with respect to the variable    of the form  

 

,0,...),,,(  UUUUH                                                                    (4) 

 

where H  is a polynomial in )(U   and its total derivatives ,...,, UUU   such that  ,
d

dUU    2

2

d

UdU    and so on. 

 

Step 2 

We assume that the formal solution of the ODE (4) can be written in the following rational form: 
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where a
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equation  
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From (5) and (6), we have 
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and so on. 

 

Step 3 

We determine the values m  and n  in (5) by balancing the highest order nonlinear terms and the highest order derivatives of 

U(ξ)   in Eq. (4) and we can determine a formula of m and n . 
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Step 4 

We substitute (5)-(8) into Eq. (4) and equate all the coefficients of 
iQ  ,...)2,1,0( i   to zero, yield a system of algebraic 

equations which can be solved using the Mathematica or Maple, to find k ,   and the coefficients of ia  ),...,1,0( ni    

and  jb  ).,...,1,0( mj    Consequently, we can get the exact solutions of Eq. (2). 

 

The obtained solutions will be depended on the symmetrical hyperbolic Fibonacci functions given in [32,37]. The 

symmetrical Fibonacci sine, cosine, tangent, and cotangent functions are, respectively, defined as: 
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Description of the general Exp a -function method 

With reference to [3] He and Wu have established the well-known exp-function method for solving many nonlinear PDEs. 

In this section, we give the main steps of the general Exp a -function method [32] as follows: 

 

Step 1 

We consider (2)-(4) of Sec. 2. 

 

Step 2 

According to the general Exp a -function method, which was suggested by Ali and Hassan [32], we assume that the wave 

solution of Eq. (4) can be expressed in the following form: 
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where  dcqp ,,,   are positive integers to be determined and  mn BA ,   are constants to be determined too, while  10  a   

is an arbitrary fixed positive number. We can write (11) in the following equivalent form 
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Step 3 

We determine the values of  pc,   by balancing the linear term of highest order of Eq. (4) with the highest order nonlinear 

term. Similarly, we determine the values of  qd ,   by balancing the linear term of lowest order of Eq. (4) with the lowest 

order nonlinear term. 

 

Step 4 

We substitute (12) into Eq. (4) and calculate all the coefficients of  
ja  ,0( j  ±1, ±2, …) Setting all the coefficients to be 

zero, we get a set of algebraic equations which can be solved by using Maple. Consequently, we can get the exact solutions 

of Eq. (2). 

 

The obtained solutions will be depended on the symmetrical hyperbolic Fibonacci functions given in (9) and (10). 

 

Applications 

In this section, we apply the generalized Kudryashov method and the general Exp a -function method describing in sections 2 

and 3 to solve Eq. (1) in the following subsections: 

 

On solving Eq. (1) using the generalized Kudryashov method 

Let us now solve Eq. (1) using the generalized Kudryashov method. To this aim, we use the wave transformation: 

 

  , ,  ,exp)(),( ctkxtPxitxu                           (13) 

 

where kP,  and c  are all constants, while  )(   is a real function of . 

Substituting (13) into Eq. (1) and separating the real and imaginary parts, we obtain the two ODEs: 
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where  .d
d  

There are two cases to be considered: 
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Case 1  

If 043   c . 

In this case differentiating Eq. (14) and substituting the result into Eq. (15), we have the nonlinear ODE: 
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Balancing   2
and ø

5
    in (16), then the following relation is attained: 
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If we choose  1m   and  ,2n   then from (5) the formal solution of Eq. (16) has the form: 
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Substituting (18)-(20) into (16), collecting the coefficients of each power of 
iQ    )10,...,1,0( i  and setting each of the 

coefficients to zero, we obtain a system of algebraic equations. Solving this system of algebraic equations with aid of Maple, 

we obtain the following sets: 
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Substituting (21) into (18), we get the following exact solution of Eq. (16): 

 

   
 

.
1

1
)(

2

2

1

2

1

1
112

1

2

1

1
21

1
222

1

































a

a

b

a

bb

aaa

a

aa                          (22) 

 

With the help of (9) and (10) the hyperbolic Fibonacci function solution of Eq. (1) has the form: 
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which can be written in the form 
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Substituting (25) into (18), we get the following exact solution: 
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Now, the soliton solutions of Eq. (1) has the form: 
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and 
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Substituting (29) into (18), we get the following exact solution: 
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Now, the soliton solutions of Eq. (1) has the form: 
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Substituting (33) into (18), we get the following exact solution: 
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Now, the singular soliton solution of Eq. (1) has the form: 
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Substituting (36) into (18), we get the following exact solution:  
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If  b1 = 0   then we have the soliton solutions of Eq. (1) has the form: 
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Case 2  

If  ,043   c   then we have:  
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From Eq. (41), we deduce that:  
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Balancing  ø′′′′  and  ø
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  in (42), then the following relation is attained: 
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Substituting (45) into (18), we get the following exact solution of Eq. (42): 
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Now, with the help of (9) and (10) the hyperbolic Fibonacci function solution of Eq. (1) has the form: 
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which can be written in the form 
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Substituting (49) into (18), we get the following exact solution: 
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Now, the soliton solutions of Eq. (1) has the form: 
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Substituting (53) into (18), we get the following exact solution: 
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Now, the singular soliton solution of Eq. (1) has the form: 
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The result of set 4 follows from the result of set 3 with the interchanges  .,2 1012 bbaa   

 

Set 5 

    

  

 
.,,0,

2
,,

16

)(ln

,48)(ln5126)(ln
48

1

,43)(ln63)(ln
24

1

11002

0

100
1004

0

44

04
2

2

031

22

442

2

3

22

02

04

1

42

2

3

2

3

22

442

2

3

22

43

4

bbbba
b

bba
aaa

a

ab

aaab
a

aak





















                  (57) 

 

Substituting (57) into (18), we get the following exact solution:  
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.)(
1000

1000

bbabb

bbaba











                                            (58) 

If  b1 = 0 then we have the soliton solutions of Eq. (1) has the form: 

 

  ,expln
32

1
tanh),(

4

3

2

4

3

3

4

32

0

0
















































 tkxiatx

b

a
txu












                (59) 

 

and 

  .expln
32

1
coth),(

4

3

2

4

3

3

4

32

0

0




















































 tkxiatx

b

a
txu












                (60) 

 

On solving Eq. (1) using the general Exp a -function method 

In this subsection, we solve Eq. (1) using the general Exp a -function method. To this aim, we use the same transformation 

(13) to get the two ODEs (14) and (15). 

There are two cases to be considered: 

  

Case  

  

If 043   c  . 

 

In this case, inserting (14) into (15) to get the ODE (16). Let us now determine the positive integers  dcqp ,,,   of Eq. (11). 

To this aim, we balance the highest order of   2
  and  

5   in (16) to get  

 

 
 

  ,
...

...
6

2

)33(

12













p

pc

ac

ac
                                   (61) 

 

and 

 
 

  ,
...

...
6

4

)5(

35













p

cp

ac

ac
                                      (62) 

where  )41( ici   are constants. From (61) and (62) we have  

  

,533 cppc                                        (63) 
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which leads to the result  

 

.cp                                                 (64) 

In the same way, to determine the values of  ,, qd   we balance the lowest order of   2
  and  

5   in (16) to get 

 

 
 

  ,
...

...
6

2

)33(

12






q

qd

ad

ad







                                  (65) 

and 

 

 
  

  ,
...

exp...
6

4

5

35






q

qd

ad

ad







                                 (66) 

 

where  )41( idi   are constants. From (65) and (66) we obtain  

 

   ,533 dqqd                                        (67) 

 

which leads to the result  

 

.dq                                                    (68) 

 

For simplicity, we set 1 cp  and .1 dq  Thus Eq. (16) has the formal solution: 

.)(
101

101



















aBBaB

aAAaA
                                                (69) 

 

where  ii BA ,  )1,0( i   are constants to be determined later. Substituting (69) into Eq. (16) and collecting all the 

coefficients of )5,...,1,0( ja j
 and equating them to zero, we have the set of algebraic equations. Solving these 

algebraic equations using the aid of Maple, we have the following sets: 

Set 1 

   

     

 

.,0,,,0,

,
3

)(ln5
)(ln22

2
,

)(ln

,
2

3

2

)(ln
,36

6
)(ln

3

1

),(ln
3

2
412

24
)(ln22

2

1

11011110

1

11
1

2

1

42

1422

4322

1

2

1
114

1

44

14
2

1432

1

22

1
2

2

432

2

43

4

4

2

432

2
22

432

BBBBBAAA
B

BA
A

A

aB
acc

A

B
c

A

aB

c
A

aB
cc

c
acP

acc
c

acck






























    (70) 
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Substituting (70) into (69), we obtain the following exact solution of Eq. (16) 

 

 
 
 

.
111

111



















aBaBB

aBaBA
                                      (71) 

 

If  ,11 BB    then with the help of (9) and (10) the hyperbolic Fibonacci function solution of Eq. (1) has the form: 

 

    ,exptanFs),(
1

1 ctkxitPx
B

A
txu 








                         (72) 

 

which can be written in the form 

 

       .explntanh),(
1

1 ctkxiatPx
B

A
txu 









                      (73) 

 

If  ,11 BB    then with the help of (9) and (10) the hyperbolic Fibonacci function solution of Eq. (1) has the form: 

 

    ,expcotFs),(
1

1 ctkxitPx
B

A
txu 








                           (74) 

 

which can be written in the form 

 

       .explncoth),(
1

1 ctkxiatPx
B

A
txu 









                         (75) 

 

which is equivalent to the previous singular soliton solution (24) if ., 1121 bBaA   

Set 2 

   

     

 

.
4

,,,,0,
4

,
4096

)(ln
,

768

)(ln5
)(ln22

128

,
2

3

128

)(ln
,36

6
)(ln

12

1

),(ln
24

1
412

24
)(ln22

8

1

1

2

0
100111102

0

2

11
1

4

1

4

1

48

04
22

1

2

1

42

0422

4322

1

2

1

4

0
11

1432

1

2

1

24

0
2

2

432

2

43

4

4

2

432

2
22

432


























B

B
BBBBBAAA

B

BA
A

BA

aB

BA

aB
acc

BA

B
c

c
BA

aB
cc

c
acP

acc
c

acck











         (76) 
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Substituting (76) into (69), we obtain the following exact solution of Eq. (16) 

 

 
 

 
.

44

44
2

110

2

0

2

0

2

1

2

011



















aBBBaBB

aBaBBA
                               (77) 

 

If  ,02

1
1 BB    then the dark soliton solution of Eq. (1) has the form: 

 

      ,expln
2

1
tanh

2
),(

0

1 ctkxiatPx
B

A
txu 

















                       (78) 

 

which is equivalent to the previous solution (28) if ., 1001 bBaA   

 

If  ,02

1
1 BB 
    then the singular soliton solution of Eq. (1) has the form: 

 

      ,expln
2

1
coth

2
),(

0

1 ctkxiatPx
B

A
txu 

















                        (79) 

which is equivalent to the previous singular soliton solution (27) if ., 1001 bBaA   

Set 3 

   

     

 

.,0,,0,,0

,
)(ln16

,
3

)(ln10
)(ln22

2

,
2

3)(ln2
,36

6
)(ln

6

1

),(ln
24

1
412

24
)(ln22

4

1

110111001

4

0

42

1

2

14
22

0

4

11422

4322

0

11
11

1432

0

2

11
2

2

432

2

43

4

4

2

432

2
22

432

BBBBBAAAA

A

aBB

A

aBB
acc

A

BB
c

c
A

aBB
cc

c
acP

acc
c

acck































       (80) 

Substituting (80) into (69), we obtain the following exact solution of Eq. (16) 

 

  .
11

0









aBaB

A
                                   (81) 

 

If  ,11 BB    then the bright soliton solution of Eq. (1) has the form: 

 

       .explnsech
2

),(
1

0 ctkxiatPx
B

A
txu 









                         (82) 
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If  ,11 BB    then the singular soliton solution of Eq. (1) has the form: 

 

       ,explncsch
2

),(
1

0 ctkxiatPx
B

A
txu 









                         (83) 

 

which is equivalent to the previous singular soliton solution (35) if ., 0120 bBaA   

 

Set 4 

   

     

 

.,,0,,,0

,
16

)(ln
,

48

)(ln5
)(ln22

8

,
2

3

8

)(ln
,36

6
)(ln

12

1

),(ln
24

1
412

24
)(ln22

8

1

1100111

1

01
01

4

1

44

14
22

1

42

1422

4322

1

2

1
11

1432

1

22

1
2

2

432

2

43

4

4

2

432

2
22

432

BBBBBAA
B

BA
AA

A

aB

A

aB
acc

A

B
c

c
A

aB
cc

c
acP

acc
c

acck



























         (84) 

  

Substituting (84) into (69), we obtain the following exact solution of Eq. (16) 

 

 
 
 

.
011

011

BaBB

BaBA










                                        (85) 

 

If  ,10 BB    then the dark soliton solution of Eq. (1) has the form: 

 

      .expln
2

1
tanh),(

1

1 ctkxiatPx
B

A
txu 

















                           (86) 

If  ,10 BB    then the singular soliton solution of Eq. (1) has the form: 

 

      .expln
2

1
coth),(

1

1 ctkxiatPx
B

A
txu 

















                                                             (87) 

 

 



www.tsijournals.com | May2017 

18 

 

 

Set 5 

    

     

   

 

.,0,
4

,
4

,,

,
)(ln16

,
2

3)(ln2

,
)(ln4

2
2

)(ln
12

5

,
)(ln4

23
6

)(ln4
12

1

)(ln
24

5
)(ln

16

1
58

24
2)(ln

)(ln16

1102

0

1

2

1
1

1

2

0
10011

8

0

44

1

4

14
21434

0

22

1

2

1
2

1122

1

2

1

4

0
43

2

42

1122

1

2

1

4

0
43

2
2

43

222

443

3

11

22

22

1

2

1

4

0

BBB
A

BA
B

A

A
AAAAA

A

aBA
c

A

aBA

c
aBA

A
c

c
a

c
aBA

cA
c

c
acP

acac
c

cca
aBA

A
k

















































            (88) 

 

Substituting (88) into (69), we obtain the following exact solution of Eq. (16) 

 

 
 

 
.

44

44
2

1

2

011

2

110

2

0

2

0



















aAaAAB

aAAAaAA
                                 (89) 

 

If  ,02

1
1 AA 
    then the dark soliton solution of Eq. (1) has the form: 

 

      ,expln
2

1
tanh

2
),(

1

0 ctkxiatPx
B

A
txu 




















                               (90) 

 

which is equivalent to the previous dark soliton solution (31) if  1120 , bBaA  . 

If  ,02

1
1 AA    then the singular soliton solution of Eq. (1) has the form: 

 

      ,expln
2

1
coth

2
),(

1

0 ctkxiatPx
B

A
txu 

















                        (91) 

 

which is equivalent to the previous singular soliton solution (32) if 1120 , bBaA  . 

 

Case 2 

If  .043   c   
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In this case, we use the same steps of case 2 in subsection 4.1 to get the ODE (42). Let us now determine the positive integers  

dcqp ,,,   of Eq. (11). To this aim, we balance the highest order of  
   and  

5   in (42) to get  

 

 
 

  ,
...

...
16

2

)15(

1














p

pc

ac

ac
                                        (92) 

 

and 

 
 

  ,
...

...
16

4

)115(

35













p

pc

ac

ac
                                       (93) 

 

where  )41( ici   are constants. From (92) and (93) we have  

 

,11515 pcpc                                             (94) 

 

which leads to the result  

 

.cp                                                  (95) 

 

In the same way, to determine the values of  ,, qd   we balance the lowest order of  
   and  

5   in (42) to get 

 

 
 

  ,
...

...
16

2

)15(

1






q

qd

ad

ad








                                         (96) 

 

and 

 

 
  

  ,
...

exp...
16

4

115

35






q

qd

ad

ad







                                 (97) 

 

where  )41( idi   are constants. From (96) and (97) we obtain  

 

   ,11515 qdqd                                      (98) 

 

which leads to the result  

 

.dq                                                    (99) 
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For simplicity, we set  1 cp   and  .1 dq  Thus Eq. (42) has the same formal solution (69). Substituting (69) into 

Eq. (42) and collecting all the coefficients of  )5,...,1,0( ja j
 and equating them to zero, we have the set of algebraic 

equations. Solving these algebraic equations using the aid of Maple, we have the following sets: 

 

Set 1 

   

.,0,,,0,,
)(ln2

,
)(ln

,
6

)(ln23
,)(ln24)(ln43

24

1

11011110

1

11
1

4

2

1

42

1

2

4

2

131
1

4

1

44

14
2

4

22

4

2

3
2

44

4

22

4

2

3

4

33

4

BBBBBAAA
B

BA
A

A

aBA

A

aBa
aak



































   (100) 

 

Substituting (100) into (69), we get the following exact solution of Eq. (42): 

 

 
 
 

.
111

111



















aBaBB

aBaBA
                                                  (101) 

 

If  ,11 BB    then the dark soliton solution of Eq. (1) has the form: 

 

  .expln
3

tanh),(
4

3

2

4

3

3

4

32

1

1




















































 tkxiatx

B

A
txu












                      (102) 

 

If  ,11 BB    then the singular soliton solution of Eq. (1) has the form: 

 

  .expln
3

coth),(
4

3

2

4

3

3

4

32

1

1




















































 tkxiatx

B

A
txu












                      (103) 

 

Set 2 

   

 

.,0,,,0,

,
3

)(ln5
)(ln2

2

,
)(ln

,
8

4
2

2

)(ln
)(ln

3

2

11011

1

11
1011

2

1

42

1422

42

2

32

14

2

1

4

13
1

4

1

44

14
2

4

2

42

2

3

2

3
42

2

3

4

2
4

4

BBBBB
B

BA
AAAA

A

aB
a

A

B

A

aBa
ak






















































           (104) 

The result of set 2 follows from the result of set 1 with the interchanges  1111 ,   BBAA   and  .   
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Set 3 

    

  

.,0,,0,,0,
)(ln16

,3)(ln563)(ln2
3

1

,43)(ln126)(ln
24

1

1101110014

0

42

1

2

14
2

2

031

22

442

2

3

2

112

04

1

42

2

3

2

3

22

442

2

3

22

43

4

BBBBBAAAA
A

aBB

AaaBB
A

aak


























             (105) 

 

Substituting (105) into (69), we get the following exact solution of Eq. (42): 

 

  .
11

0









aBaB

A
                                                   (106) 

 

If  ,11 BB    then the bright soliton solution of Eq. (1) has the form: 

 

  .expln
3

sech
2

),(
4

3

2

4

3

3

4

32

1

0




















































 tkxiatx

B

A
txu












                     (107) 

 

If  ,11 BB    then the singular soliton solution of Eq. (1) has the form: 

 

  ,expln
3

csch
2

),(
4

3

2

4

3

3

4

32

1

0
















































 tkxiatx

B

A
txu












                      (108) 

 

which is equivalent to the previous singular soliton solution (55) if 0120 , bBaA  . 

 

 

 

Set 4 

    

  

.
4

,,,,0,
4

,
4096

)(ln

,768)(ln5126)(ln
768

1

,43)(ln63)(ln
24

1

1

2

0
100111102

0

2

11
14

1

4

1

48

04
2

2

1

2

131

22

442

2

3

24

02

1

2

14

1

42

2

3

2

3

22

442

2

3

22

43

4























B

B
BBBBBAAA

B

BA
A

BA

aB

BAaaB
BA

aak












       (109) 

 

Substituting (109) into (69), we get the following exact solution of Eq. (42): 
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.

44

44
2

110

2

0

2

0

2

1

2

011



















aBBBaBB

aBaBBA
                                    (110) 

 

If  ,02

1
1 BB    then the dark soliton solution of Eq. (1) has the form: 

 

  ,expln
32

1
tanh

2
),(

4

3

2

4

3

3

4

32

0

1
















































 tkxiatx

B

A
txu












                   (111) 

 

which is equivalent to the previous dark soliton solution (59) if 0002

1
1 , bBaA  . 

If  ,02
1

1 BB 
   then the singular soliton solution of Eq. (1) has the form: 

 

  ,expln
32

1
coth

2
),(

4

3

2

4

3

3

4

32

0

1
















































 tkxiatx

B

A
txu












            (112) 

 

which is equivalent to the previous singular soliton solution (60) if 0002

1
1 , bBaA  . 

 

Set 5 

 

   

.,,0,,,0,
8

)(ln8

,
16

)(ln
,

12

)(ln6
,)(ln3)(ln26

48

1

1100111

1

01
01

4

2

1

42

1

2

4

2

131
1

4

1

44

14
2

4

22

4

2

3
2

44

4

22

4

2

3

4

33

4

BBBBBAA
B

BA
AA

A

aBA

A

aBa
aak
































      (113) 

 

Substituting (113) into (69), we get the following exact solution of Eq. (42): 

 

 
 
 

.
011

011

BaBB

BaBA










                                                         (114) 

 

If  ,10 BB    then the dark soliton solution of Eq. (1) has the form: 

 

  .expln
6

)(ln
12

1

2

1
tanh),(

4

3

2

4

3

32

3

1

1



















































 tkxiatxa

B

A
txu








          (115) 
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If  ,10 BB    then the singular soliton solution of Eq. (1) has the form: 

 

  .expln
6

)(ln
12

1

2

1
coth),(

4

3

2

4

3

32

3

1

1



















































 tkxiatxa

B

A
txu








            (116) 

 

Some graphical representations of some solutions 

In this section, we will illustrate the application of the results established above. Exact solutions of the results describe 

different nonlinear waves. For the established bright, dark and singular soliton solutions with symmetrical hyperbolic 

Fibonacci functions are special kinds of solitary waves. Bright, dark and singular soliton solutions have a remarkable 

property that keeps its identity upon interacting with other. 

 

Let us now examine FIG. 1, 2, 3 and 4 as it illustrates some of our results obtained in this article. To this end, we select some 

special values of the obtained parameters, for example, in some of the singular , dark and bright soliton solutions (27), (55), 

(73) and (107) of the nonlinear Schrödinger equation with fourth-order dispersion and cubic-quintic nonlinearity with 

,,131110102 eacBAAbba    10,10  tx  , respectively. 

 

FIG. 1. Plot solution t)u(x, of (27) with 2.=10/3,=15/4,=k19/6,=p 42   

 

 

FIG. 2. Plot solution t)u(x, of (55) with 1.==-1/6,=k4/3,=p 42   
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FIG. 3. Plot solution t)u(x, of (73) with 2.=1,=1/4,=k5/6,=p 42   

 

 

FIG. 4. Plot solution t)u(x, of (107) with 1.==-1/6,=k4/3,=p 42   

 

Conclusion 

In this article, we have shown that the symmetrical hyperbolic Fibonacci function solutions can be obtained by using the 

generalized Kudryashov method and the general Exp a -function method. As applications, abundant we have obtained many 

new exact solutions, symmetrical hyperbolic Fibonacci function solutions as well as bright, dark and singular soliton 

solutions of the nonlinear Schrödinger equation with fourth-order dispersion and cubic-quintic nonlinearity. On comparing 

our results obtained in this article using these different methods with the well-known results obtained in [34-36] using a 

different method, we conclude that our results for Eq. (1) are new and not published elsewhere. Further, the different methods 

used in this article are very powerful and effective techniques in finding the exact solutions, solitary wave solutions and 

soliton solutions for a wide range of nonlinear problem. Finally, our results obtained in this article have been checked with 

the aid of the Maple by putting them back into the original Eq. (1). 
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