GENERALIZED CANONICAL SINE TRANSFORM

A. V. JOSHI* and A. S. GUDADHEa

Shankarlal Khandelwal College, AKOLA – 444002 (M.S.) INDIA
aGovt. Vidarbha Institute of Science and Humanities, AMRAVATI (M.S.) INDIA

(Received : 28.02.2012; Revised : 15.03.2012; Accepted : 24.03.2012)

ABSTRACT

As generalization of the fractional Sine transform (FRST), the canonical sine transform (CST) has been used in several areas, including optical analysis and signal processing. Besides, the canonical sine transform is also useful for radar system analysis, filter design, phase retrieval pattern recognition, and many other verities of branches of mathematics and engineering. In this paper we have proved some important results about the analyticity theorem; we have also proved the Scaling property of canonical sine transform.

Keywords: Linear canonical transform, CCT, Fractional fourier transform.

INTRODUCTION

Integral transforms had provided a well establish and valuable method for solving problems in several areas of both Physics and Applied Mathematics. The roots of the method can be stressed back to the original work of Oliver Heaviside in 1890. This method proved to be of great importance, in the initial and final value problems for partial differential equations. Due to wide spread applicability of this method for partial differential equations involving distributional boundary conditions, many of the integral transforms are extended to generalized functions.

The idea of the fractional powers of Fourier operator appeared in mathematical literature as early in 1930. It has been rediscovered in quantum mechanics by Namias9. He had given a systematic method for the development of fractional integral transforms by means of eigenvalues. Later on numbers of integral transforms are extended in its fractional domain. For examples Almeida2 had studied fractional Fourier transform, Akay1 developed fractional Mellin transform, Pei, Ding12 studied fractional cosine and sine transforms, etc. These fractional transforms found number of applications in signal processing, image processing, quantum mechanics etc.

Recently further generalization of fractional Fourier transform known as linear canonical transform was introduced by Moshinsky8 in 1971. Pei, Ding6 had studied its eigen value aspect.
Linear canonical transform is a three parameter linear integral transform which has several special cases as fractional Fourier transform, Fresnel transform, Chirp transform etc. Linear canonical transform is defined as,

$$[\text{LCT} f(t)](s) = \sqrt{\frac{1}{2\pi b}} \cdot \int_{-\infty}^{\infty} e^{\frac{i}{2} \frac{d}{b} s^2} \cdot e^{\frac{i}{2} (a/b)^2} \cdot e^{-i(s/b)t} f(t) \, dt,$$

for $b \neq 0$

$$= \sqrt{d} \cdot e^{\frac{i}{2} (a)^2 s^2} \cdot f(d \cdot s), \text{ for } b = 0, \text{ with } ad - bc = 1,$$

where a, b, c, and d are real parameters independent on s and t.

Testing Function Space (I)

An infinitely differentiable complex valued function ϕ on \mathbb{R}^n belongs to $I(\mathbb{R}^n)$, if for each compact set $I \subset s_a$

where $s_a = \{ t \in \mathbb{R}^n, \| t \| \leq \alpha, \alpha > 0 \}$ and for $I \in \mathbb{R}^n$,

$$\gamma_{E,I,(\phi)} = \sup_{t \in I} \| D^k \phi(t) \| < \infty$$

Proposition

$$K_s(t,s) \in I, \text{ Where } K_s(t,s) = (-i) \sqrt{\frac{1}{2\pi b}} \cdot e^{\frac{i}{2} (a/b)^2} \cdot e^{\frac{i}{2} (a/b)^2} \cdot \sin(s/b) t$$

Proof: We have to prove $\gamma_{I,K} K_s(t,s) < \infty$, is to show that

$$\sup |D^s K_s(t,s)| < \infty$$

We know that

$$D^s K_s(t,s) = D^s \left[C_s e^{\frac{i}{2} (a/b)^2} \cdot \sin(s/b) t \right]$$

Let $f = e^{\frac{i}{2} (a/b)^2} \cdot \sin(s/b) t$

$$f' = e^{\frac{i}{2} (a/b)^2} \cdot \cos(s/b) t \left(\frac{s}{b} \right) + \sin(s/b) t \cdot e^{\frac{i}{2} (a/b)^2} \cdot \left(\frac{a}{b} \right) t$$

$$f'' = e^{\frac{i}{2} (a/b)^2} \left[\cos(s/b) t \left(\frac{s}{b} \right) + \sin(s/b) t \cdot \left(\frac{a}{b} \right) t \right]$$
\[f^n = e^{\frac{i}{2}(a/b)^2t^2} \left[-\sin(s/b)t(s^2/b^2) + \cos(s/b)t\cdot i(a/b) \cdot \sin(s/b)t \right] \\
+ \left(\cos(s/b)t(s/b) + \sin(s/b)t\cdot i(a/b)t \right) e^{\frac{i}{2}(a/b)^2t^2} \cdot i(a/b)t \\
= e^{\frac{i}{2}(a/b)^2t^2} \left[\cos(s/b)t\cdot i(a/b)\cdot \sin(s/b)t(s^2/b^2) + i(a/b)\cdot \sin(s/b)t \right. \\
+ \left. \cos(s/b)t(s/b)i(a/b)t - \sin(s/b)t(a^2/b^2)t^2 \right]. \\
\]

and so on

\[F^n = e^{\frac{i}{2}(a/b)^2t^2} \left[\cos(s/b)t\cdot C_1(s) + \sin(s/b)t\cdot C_2(s) \right]. \]

Where \(C_1(s) \) and \(C_2(s) \) are functions of \('s, \)

\[|f^n(t)| \leq e^{\frac{i}{2}(a/b)^2t^2} \left[|\cos(s/b)t\cdot C_1(s)| + |\sin(s/b)t\cdot C_2(s)| \right]. \]

\[|f^n(t)| < \infty \]

\[\sup D^n_{s} K_s(t, s) < \infty, \]

Hence \(K_s(t, s) \in I(R^n) \)

Generalized canonical sine transform (CST)

The canonical sine transform of \(f \in I^1(R^n) \) can be defined by,

\[\{ \text{CST } f(t) \}(s) = \{ f(t), K_s(t, s) \}, \]

Where \(K_s(t, s) = (-i) \sqrt{\frac{1}{2\pi b}} \cdot e^{\frac{i}{2}(a/b)^2} \cdot e^{\frac{i}{2}(a/b)^2} \cdot \sin(s/b)t \) \(\ldots (1.1) \)

Clearly Kernel \(K_s(t, s) \in I \) and \(K_s(t, s) \in I^1(R^n) \) the kernel (1) Satisfies the following properties.

Properties of Kernel

(i) \(K_{(a,b,c,d)}(t, s) \neq K_{(a,b,c,d)}(t, s), \) if \(a \neq d \)
(ii) \(K_{(a,b,c,d)}(t, s) = K_{(a,b,c,d)}(t, s), \) if \(a = d \)
(iii) \(K_{(a,b,c,d)}(t, s) = K_{(a-b,c,d)}(t, s) \)
(iv) \(K_{(a,b,c,d)}(-t, s) = K_{(a,b,c,d)}(t, -s) \)
Analyticity theorem for canonical sine transform

Let \(f \in L^1(R^n) \) and let its canonical sine transform be defined by,

\[
\{CST \, f(t)\}(s) = -\frac{1}{2\pi b} \cdot e^{\frac{i(s^2)}{2b}} \int_{-\infty}^{\infty} e^{\frac{i(t^2)}{2b}} \cdot i \sin(s/b) t \, f(t) \, dt
\]

then \(\{CST \, f(t)\}(s) \) is analytic on \(\mathbb{C}^n \),

Proof: Let \(s: \{s_1, s_2, \ldots, s_j, \ldots, s_n\} \in \mathbb{C}^n \)

We first prove that,

\[
\frac{\partial^k}{\partial s_j^k} \{CST \, f(t)\}(s) = \frac{\partial^k}{\partial s_j^k} K_s(t,s) > 0 \quad \ldots(1.2)
\]

\[
K_s(t,s) = -\frac{1}{2\pi b} \cdot e^{\frac{i(s^2)}{2b}} \cdot e^{\frac{i(t^2)}{2b}} \cdot i \sin(s/b) t,
\]

We prove the result \(k = 1 \), the general result following by induction.

For fixed \(s_j \neq 0 \) choose two concentric circles \(P \) and \(P^1 \) with centre \(s_j \) and radii \(r \) and \(r_1 \) respectively such that \(0 < r < r_1 < |s_j| \)

Let \(\Delta s_j \) be a complex increment satisfying \(0 < |\Delta s_j| < r \)

\[
\frac{(CST) (s + \Delta s_j) - (CST) (s_j)}{\Delta s_j} = \frac{\partial}{\partial s_j} K_s(t,s) \quad = <f(t), \frac{\partial^1}{\partial s_j^1} K_s(t,s) > \quad = <f(t), \Psi \Delta s_j(t) > .
\]

Where \(\Psi \Delta s_j(t) = \frac{1}{\Delta s_j} \left[K_s(t,s_1, s_2, \ldots, s_j, \ldots, s_n + \Delta s_j \ldots s_n) - K_s(t,s) - \frac{\partial}{\partial s_j} K_s(t,s) \right] .
\]

For fixed \(t \in \mathbb{R}^n \) and any fixed integer,

\(k = (k_1, k_2, \ldots, k_n) \in \mathbb{N}^n \)

\(k \) and \(D^k_i K_s(t,s) \) is analytic inside and on \(P^1 \)

We have,

By Cauchy integral formula,

\[
D^k_i \Psi \Delta s_j(t) = \frac{D^k_i}{\Delta s_j} \left[\frac{1}{2\pi i} \int_{\partial \gamma} \frac{K_s(t,s)dz}{z - (s_j + \Delta s_j)} - \frac{1}{2\pi i} \int_{\partial \gamma} \frac{K_s(t,s)dz}{z - s_j} - \frac{1}{2\pi i} \int_{\partial \gamma} \frac{K_s(t,s)dz}{(z - s_j)^2} \right]
\]
\[D_t^k \Psi \Delta s_j(t) = \frac{1}{2\pi i} D_t^k K_s(t, s) \left(\frac{1}{\Delta s_j} \left(\frac{1}{z - s_j - \Delta s_j} - \frac{1}{z - s_j} \right) - \frac{1}{(z - s_j)^2} \right) \, dz \]

\[D_t^k \Psi \Delta s_j(t) = \frac{\Delta s_j}{2\pi i} \int_{\mathbb{R}^n} D_t^k K_s(t, s) \frac{dz}{(z - s - \Delta s_j)^2 (z - s_j)^2} \, dz, \]

where,

\[s = (s_1, \ldots, s_{j-1}, z, s_{j+1}, \ldots, s_n). \]

But for \(z \in P^1 \) and \(t, \) restricted to a compact subset of \(\mathbb{R}^n, \)

\[M(t, s) = D_t^k K_s(t, s) \] is bounded by constant \(M_1, \) therefore, we have

\[|D_t^k \Psi \Delta s_j(t)| \leq |\Delta s_j| \frac{M_1}{(r_1 - r_i) (r_i)} \]

Thus as \(|\Delta s_j| \to 0, \) \(D_t^k \Psi \Delta s_j(t) \) tends to zero. Uniformly on the compact subset’s of \(\mathbb{R}^n \) therefore, it follows that \(\Psi \Delta s_j(t) \) converges in \(E(\mathbb{R}^n) \) to zero since \(f \in E^1 \) we concluded

\[\frac{\partial}{\partial s_j} \{\text{CST } f(t)\}(s) = \langle f(t), \frac{\partial}{\partial s_j} K_s(t, s) \rangle. \]

Also tends to zero,

\[\therefore \{\text{CST } f(t)\} (s) \text{ is differentiable with respective } s_j. \text{ But this is true for all } j=1,2, \ldots, n. \]

Hence \(\{\text{CST } f(t)\} (s) \) is analytic on \(C^n \) and,

\[D_s^k \{\text{CST } f(t)\}(s) = \langle f(t), D_s^k K_s(t, s) \rangle \]

i.e.

\[D_s^k \{\text{CST } f(t)\}(s) = \langle f(t), D_s^k K_s(t, s) \rangle \]

i.e.

\[D_s^k \{\text{CST } f(t)\}(s) = \langle f(t), D_s^k \left(-\sqrt{\frac{1}{2\pi b}} \cdot e^{\frac{i}{2} \theta} \cdot \left(e^{\frac{i}{2} \theta} \right)^2 \cdot \sin(s/b) t \right) \rangle \]

Inversion theorem

If \(\{\text{CST } f(t)\} (s) \) Canonical sine transform of \(f(t) \) given by,

\[\{\text{CST } f(t)\}(s) = -\left(\frac{1}{2\pi b} \cdot e^{\frac{i}{2} \theta} \right)^2 \int_{-\infty}^{\infty} i \sin(s/b) t \cdot e^{\frac{i}{2} \theta} \cdot f(t) \, dt \]

then,
\[f(t) = e^{\frac{-i(a)^2}{2}} \sqrt{\frac{2\pi}{b}} \int_{-\infty}^{\infty} e^{\frac{-i(d)^2}{2}} \cdot \sin(s / b) t \cdot \{CST \ f(t)\} (s) ds \]

Proof: The canonical sine transform of \(f(t) \) is given by,

\[\{CST \ f(t)\} (s) = \sqrt{\frac{1}{2\pi b}} \cdot e^{\frac{i(d)^2}{2}} \int_{-\infty}^{\infty} i \sin(s / b) t \cdot e^{\frac{i(a)^2}{2}} \ f(t) dt \]

\[\therefore F(s) = -\sqrt{\frac{1}{2\pi b}} \cdot e^{\frac{i(d)^2}{2}} \int_{-\infty}^{\infty} i \sin(s / b) t \cdot e^{\frac{i(a)^2}{2}} \ f(t) dt. \]

Where,

\[F(s) = \{CST \ f(t)\} (s) \]

\[F(s) = -(i) \sqrt{\frac{1}{2\pi b}} \cdot e^{\frac{i(d)^2}{2}} \int_{-\infty}^{\infty} \sin(s / b) t \cdot e^{\frac{i(a)^2}{2}} \ f(t) dt \]

\[F(s) \sqrt{2\pi b} \cdot e^{\frac{-i(d)^2}{2}} = (-i) \int_{-\infty}^{\infty} e^{\frac{i(a)^2}{2}} \cdot \sin(s / b) t \cdot f(t) dt \]

\[F(s) i \sqrt{2\pi b} \cdot e^{\frac{-i(d)^2}{2}} = \int_{-\infty}^{\infty} e^{\frac{i(a)^2}{2}} \cdot \sin(s / b) t \cdot f(t) dt. \]

\[C_1(s) = \int_{-\infty}^{\infty} e^{\frac{i(a)^2}{2}} \cdot f(t) \cdot \sin(s / b) t \cdot dt, \]

where,

\[F(s) i \sqrt{2\pi b} \cdot e^{\frac{-i(d)^2}{2}} = C_1(s) \]

and

\[g(t) = e^{\frac{i(a)^2}{2}} \ f(t) \]

\[C_1(s) = \int_{-\infty}^{\infty} g(t) \cdot \sin(s / b) t dt \]

\[C_1(s) = \int_{-\infty}^{\infty} g(t) \cdot \sin(\eta \ t) dt. \]

By putting \(s / b = \eta \)
Using inversion formula,

\[g(t) = \int_{-\infty}^{\infty} C_1(s) \cdot \sin(\eta \cdot t) \, d\eta \]

\[\eta_{dsb} = 1 \quad \text{...(1.2.3)} \]

\[e^{-i \frac{(a)}{\eta} \cdot t^2} \cdot f(t) = \int_{-\infty}^{\infty} F(s) \cdot i\sqrt{2\pi b} \cdot e^{-\frac{i (d)}{\eta} \cdot t^2} \cdot \sin(\eta \cdot t) \, d\eta \]

\[: f(t) = e^{-i \frac{(a)}{2 \eta} \cdot t^2} \int_{-\infty}^{\infty} F(s) \cdot i\sqrt{2\pi b} \cdot e^{-\frac{i (d)}{2 \eta} \cdot t^2} \cdot \sin(\eta \cdot t) \, d\eta \]

\[f(t) = e^{-i \frac{(a)}{2 \eta} \cdot t^2} \int_{-\infty}^{\infty} F(s) \cdot i\sqrt{2\pi b} \cdot e^{-\frac{i (d)}{2 \eta} \cdot t^2} \cdot \sin(s/b) \cdot t \frac{1}{b} \, ds. \quad \text{...(1.2.3)} \]

\[f(t) = e^{-i \frac{(a)}{2 \eta} \cdot t^2} \sqrt{\frac{2\pi^3}{b}} \int_{-\infty}^{\infty} e^{-\frac{i (d)}{2 \eta} \cdot t^2} \cdot \sin(s/b) \cdot t \, F(s) \cdot ds \]

\[f(t) = e^{-i \frac{(a)}{2 \eta} \cdot t^2} \sqrt{\frac{2\pi^3}{b}} \cdot \sin(s/b) \cdot t \\{\text{CST } f(t)\}(s) \, ds \]

Scaling property of canonical sine transform

If \{\text{CST } f(t)\} \,(s)\) denotes generalized canonical sine transform of \(f(t)\), then,

\[\{\text{CST } f(t)\}(s) = \frac{1}{k} e^{\left(1-\frac{1}{k}\right)\frac{i (a)}{2 \eta} \cdot s^2} \left[\text{CST } f(t) e^{\left(1-\frac{1}{k}\right)\frac{i (a)}{2 \eta} \cdot t^2} \right](s) \]

Proof: \(\{\text{CST } f(kt)\}(s) = (-i) \sqrt{\frac{1}{2\pi b}} \cdot e^{\frac{i (d)}{2 \eta} \cdot t^2} \int_{-\infty}^{\infty} e^{\frac{i (d)}{2 \eta} \cdot t^2} \cdot \sin(s/b) \cdot t \cdot f(kt) \, dt \)

Put, \(kt = T, \, dt = \frac{1}{k} \, dT \)

\[\{\text{CST } f(kt)\}(s) = (-i) \sqrt{\frac{1}{2\pi b}} \cdot e^{\frac{i (d)}{2 \eta} \cdot t^2} \int_{-\infty}^{\infty} e^{\frac{i (d)}{2 \eta} \cdot t^2} \cdot \sin(s/b) \left(\frac{T}{k}\right) \cdot F(T) \, dT \]

\[= (-i) \sqrt{\frac{1}{2\pi b}} \cdot e^{\frac{i (d)}{2 \eta} \cdot t^2} \int_{-\infty}^{\infty} e^{\frac{i (d)}{2 \eta} \cdot t^2} \cdot \sin \left(\frac{s}{bk}\right) TF(T) \, dT \]

\[\frac{k}{T} \]
\[= (-i) \frac{1}{k} \sqrt{\frac{1}{2\pi b}} \int_{-\infty}^{\infty} e^{\frac{i}{\sqrt{2}} \left(\frac{a}{2b} \right)^2} e^{\frac{i}{\sqrt{2}} \left(\frac{a}{2b} \right)^2} e^{\frac{i}{\sqrt{2}} \left(\frac{a}{2b} \right)^2} \sin\left(\frac{s}{b} \right) f(t) dt\]

\[= (-i) \frac{1}{k} \sqrt{\frac{1}{2\pi b}} \int_{-\infty}^{\infty} e^{\frac{i}{\sqrt{2}} \left(\frac{a}{2b} \right)^2} e^{\frac{i}{\sqrt{2}} \left(\frac{a}{2b} \right)^2} e^{\frac{i}{\sqrt{2}} \left(\frac{a}{2b} \right)^2} \int_{-\infty}^{\infty} e^{\frac{i}{\sqrt{2}} \left(\frac{a}{2b} \right)^2} \sin\left(\frac{s}{b} \right) f(t) e^{-\frac{i}{\sqrt{2}} \left(\frac{a}{2b} \right)^2} dt\]

\[= \frac{1}{k} (-i) \sqrt{\frac{1}{2\pi b}} \int_{-\infty}^{\infty} e^{\frac{i}{\sqrt{2}} \left(\frac{a}{2b} \right)^2} e^{\frac{i}{\sqrt{2}} \left(\frac{a}{2b} \right)^2} e^{\frac{i}{\sqrt{2}} \left(\frac{a}{2b} \right)^2} \int_{-\infty}^{\infty} e^{\frac{i}{\sqrt{2}} \left(\frac{a}{2b} \right)^2} \sin\left(\frac{s}{b} \right) f(t) e^{-\frac{i}{\sqrt{2}} \left(\frac{a}{2b} \right)^2} dt\]

\[= \frac{1}{k} \cdot e^{\left(\frac{1}{\sqrt{2}} \right) \frac{i}{2} \frac{a}{b} t^2} \int_{-\infty}^{\infty} e^{\left(\frac{1}{\sqrt{2}} \right) \frac{i}{2} \frac{a}{b} t^2} f(t) K_s(t,s) dt\]

\[\{CST\} f(kt)(s) = \frac{1}{k} e^{\left(\frac{1}{\sqrt{2}} \right) \frac{i}{2} \frac{a}{b} s^2} \int_{-\infty}^{\infty} e^{\left(\frac{1}{\sqrt{2}} \right) \frac{i}{2} \frac{a}{b} t^2} f(t) K_s(t,s) dt\]

\[\{CST\} f(kt)(s) = \frac{1}{k} e^{\left(\frac{1}{\sqrt{2}} \right) \frac{i}{2} \frac{a}{b} s^2} \left[CST \left\{ f(t) e^{\left(\frac{1}{\sqrt{2}} \right) \frac{i}{2} \frac{a}{b} t^2} \right\} \right](s)\]

CONCLUSION

In this paper, brief introduction of the generalized canonical sine transform is given and its analyticity theorem, inverse theorem is proved. Scaling property of canonical sine transform is also obtained which will be useful in solving differential equations occurring in signal processing and many other branches of engineering.

ACKNOWLEDGEMENT

The author is thankful to referee, for his valuable comments. The suggestions made by Professor A. S. Gudadhe have been very helpful in this investigation.

REFERENCES

