December 2009

Materials Science An Indian Journal FUIN Paper

Trade Science Inc.

MSAIJ, 5(4), 2009 [382-386]

Gamma-irradiations effects on structural and micro-structural parameters of water remediator HP-mica-Cr-III-clay synthesized in organic solvent

Khaled M.Elsabawy^{1,2*}, W.F.Elhawary^{1,3}, Q.Mohsen¹, M.M.M.Youssef^{1,4} ¹Materials Science & Analytical Units, Chemistry Department, Faculty of Science, Taif University-888 Alhawya, Taif-Kingdom of (SAUDIARABIA) ²Materials Science Unit-Chemistry Department-Faculty of Science-31725-Tanta University-(EGYPT) ³Analytical LabUnit -Chemistry Department-Faculty of Science-Cairo University-(EGYPT)

⁴Organic LabUnit - Chemistry Department-Faculty of Science-Cairo University-(EGYPT)

E-mail:ksabawy@yahoo.com

Received: 17th September, 2009; Accepted: 27th September, 2009

ABSTRACT

Solution route was applied to synthesize new family of free-fluoride synthetic clay. All starting solutions were made by applying carbon tetra-chloride (CCl₄) as a solvent. The selected sample of synthetic free fluoride-Na-4mica was having the general formula (Na₄Mg₆M₄Si₄O₂₂.nH₂O) where M=Cr³⁺was exposured to two different γ -irradiation doses 1st dose=1.5 MR/ h and 2nd dose=3 MR/h at 25cm distance. Structural parameters such as lattice constants, volume and phase quality were monitoring carefully by using both of XRD and SEM evaluating grain size of the mica bulk.Structural investigations proved that Cr-clay exhibits monoclinic phase accompanied with structure quality in comparison with both of Bi-and Al-clays. © 2009 Trade Science Inc. - INDIA

KEYWORDS Synthesis;

Mica clay: Free fluoride; XRD; SEM; Structural Parameters.

INTRODUCTION

Recently many studies were carriedout to investigate the effects of nuclear irradiations such as gamma irradiations^[1-3] on the physico-chemical parameters (degree of crystallinity, specific surface area, cation exchange capacity and main layers charge). "swelling micas" this group of synthetic clays, of which Na-4-mica is only one, were originally developed expressly for water treatment. They expand as they absorb metal ions, then collapse, sealing the metals inside. Na-4-mica is formed by combining kaolinite, a soft clay mineral used in the ceramics industry, with magnesium oxide in so-

dium fluoride at a temperature of 890°C. The resulting product has natural mica's sheet like structure and brittle composition, but the space between the layers.

Waste streams encountered in mining operations, and various chemical processing industries, contain heavy metals which are non-biodegradable, toxic priority pollutants. Due to their tendency to accumulate in living organisms, causing various diseases and disorders, the treatment methods for metal-bearing effluents are essential for environmental and human health protection. Among numerous commonly used techniques for water purification, adsorption technologies have gained the most attention because of their low cost and easy operation[4-18].

Volume 5 Issue 4

383

In recent years, an intensive research was conducted focusing on the selection and/or production of low-cost adsorbents with good metal-binding capacities, which could be utilized as an alternative to the most widely used adsorbent in wastewater treatment-activated carbon. Natural materials of both organic and inorganic nature (such as chitosan, zeolites, minerals, etc.) and certain waste products from industrial operations (such as fly ash, coal and oxides) are classified as low-cost adsorbents because they are economical and locally available^[19-31] Na-4-mica has much the same composition as natural mica, containing aluminum, silicon, and magnesium. But natural mica also contains potassium ions, which sit in hexagonal holes in the mineral's layers, superimposed upon one another, bonding the sheets tightly together. This "closed" structure makes natural mica a poor ion exchange medium^[1,2].

The major goal in the present article is to investigate the effect gamma irradiation doses on Structural and micro-structural properties of $Na_4Mg_6Cr_4Si_4O_{22}.nH_2O$ mica clay sample.

EXPERIMENTAL

Samples preparation

The selected samples of synthetic free fluoride -Na-4-mica which having the general formula $(Na_4Mg_6M_4Si_4O_{22}.nH_2O)$ where M=Cr³⁺ was synthesized by applying solution route and sintering procedure using the molar ratios of Na₂O.2SiO₂.2H₂O, MgCO₃ and Cr₂O₃ each of highly pure chemical grade purity. The mixture were ground carefully then disolved in few drops of concentrated nitric acid forming nitrate extract which diluted by water/carbon tetra-chloride 50% volume.

Mixture I was for sodium silicates solution and mixture II was for rest of component (Mg+Cr) nitrates according to chemical formula desired. Mixture I was diluted by CCl_4 to be 100ml then pH was adjusted to be 8.5 concentrated solution of ammonia was added carefully till heavy white precipitate from Metals hydroxide is obtained and the pH must be higher than 8. The precursor is filtered and washed by 2.5% ammonium nitrate solution. Mixture II of (Mg+Cr) was passing through the same treatment but in present of ethylene glycol as complexing agent to produce gelatinous precipitate of metals cations hydroxide precursor.

The Mixture I+Mixture II precursors were forwarded to muffle furnace and calcinations process was performed at 880°C under a compressed air atmosphere for 10hrs then reground and pressed into pellets (thickness 0.2cm and diameter 1.2cm) under 10 Ton/ cm². Sintering was carried out under air stream at 1000°C for 10hrs. The samples were slowly cooled down (20°C/hr) till 500°C and annealed there for 3hrs under air stream. The furnace is shut off and cooled slowly down to room temperature. Finally the materials are kept in vacuum desiccator over silica gel dryer.

The sample was named as Clay

Figure 1a : Molecular sieving structure of Cr-III-silicatesclay

Figure 1b : Structure of al-silicates-clay I I= $(Na_4Mg_6Al_4Si_4O_{22}.nH_2O)$, Clay II= $(Na_4Mg_6Bi_4-Si_4O_{22}.nH_2O)$ and Clay III= $Na_4Mg_6Cr_4Si_4O_{22}.nH_2O$. As described in Figure 1 tetrahedral units of silicate are the backbone structure of mica clay indicating that each unit cell surrounded by 4-Na-atoms that can be replaced if it is applied as cations exchanger or molecular

Full Paper

sieving material.

Samples irradiation

The sample was cut as three dimensional rectangle and exposured to perpendecular gamma-irradiations source by two different doses 1st dose=1.5MR/h at 25cm distance) and 2nd dose=3MR/h at 25 cm distance) by using Cs¹³⁷ as gama-ray irradiations source.

Phase identification

The X-ray diffraction (XRD) measurements were carried out at room temperature on the fine ground samples using Cu-K α radiation source, Ni-filter and a computerized STOE diffractometer/Germany with two theta step scan technique.

Scannig Electron Microscopy (SEM) measurements were carried out at different sectors in the prepared samples by using a computerized SEM camera with elemental analyzer unit (PHILIPS-XL 30 ESEM/ USA).

RESULTS AND DISCUSSION

Phase identification

Figure (2,3a-c): display the high resolution X-ray powder diffraction pattern recorded for synthetic free fluoride-Na-4-mica samples which are having the general formula ($Na_4Mg_6M_4Si_4O_{22}$.nH₂O) where M=Cr³⁺. The analysis of the corresponding 2θ values and the interplanar spacings d(A°) were carried out using computerized program and indicated that, the X-ray crystalline structure mainly belongs to a monoclinic phase Na₄Mg₆M₄Si₄O₂₂.nH₂O in major besides few peaks of unreacted starting oxides as secondary phase in minor. The lattice parameters of the unit cell were refined using the least-squares sub-routine of a standard computer program these refined lattice parameters were found typically to those reported in[19-23] literatures. These unit cell parameters are in good agreement with those of the reported ones for Na4Mg6M4Si4O22.nH2O structure[6].

It is obviously that, gamma irradiation doses have a negligible effect on the main crystalline structure of $Na_4Mg_6Cr_4Si_4O_{22}$.nH₂O as shown in Figure (2b,c).

From Figure (3a,b) one can indicate that monoclinic phase of mica-clay $Na_4Mg_6Cr_4Si_4O_{22}.nH_2O$ is the dominating phase by ratio exceeds than 90% (d

Figure 3a-c : HR-X-ray diffraction patterns recorded for; (a) Cr-III-clay (Non-irradiated sample) (b) After 1st gamma-irradiation dose=1.5 MR/h

(c) After 2nd gamma-irradiation dose=3 MR/h

Figure 3d : Variation of c-axis versus gamma irradiation dose 100=1.12-1.13nm) confirming that gamma-irradiation doses does not affect on the monoclinic biotite phase.

These results are in full agreement with those reported by Allard and Calas^[31] who are confirmed that

> Full Paper

radiations effects have negligible on both of structural and chemical properties of clay mineral.

The lattice constants a, b, c of domain monoclinic phase were calculated after 1st and 2nd irradiation dose indicating that no sharp changes occurred in these values.

Figure (3d) shows the variation of c-axis lattice parameter as a function of gamma absorbed dose. It was observed that c-axis compresses as gamma-absorbed dose increases as clear in Figure (3d) due to induced gamma-ray has oxidative nature causing oxidation to metals cations from lower to higher oxidation state such as CrIII, CrIV and consequently increasing in the total charge inside lattice causing compression of the volume lattice and consequently decreasing in c-axis.

TABLE 1 explain EDX-elemental analysis data recorded for $Na_4Mg_6Cr_4Si_4O_{22}$.nH₂O that prepared via solution route. It is clear that the atomic percentage recorded is approximately typical with the molar ratios of the prepared sample emphasizing the quality of preparation through solution technique.

On the basis of molar ratio the allowed error in experimental procedures through out solution rout is lesser than those reported in literatures for those synthesized by solid state routes^[24,25].

SE-microscopy measurements

Figure 4 show the SEM-micrographs recorded $Na_4Mg_6M_4Si_4O_{22}.nH_2O$ that prepared via solution route where M=Cr⁺⁺⁺. The estimated average of grain size was calculated and found in between 2.37-3.43µm supporting the data reported in^[23].

The EDX examinations for random spots in the same sample confirmed and are consistent with our XRD analysis for polycrystalline $Na_4Mg_6M_4Si_4O_{22}.nH_2O$ that prepared via solution route, such that the differences in

 TABLE 1 : EDX-Elemental analysis data recorded for Crclay-III

Cr-Clay-III						
Element	Wt %	At %	K- Ratio	Z	Α	F
O K	37.81	57.25	0.1069	1.7334	0.1481	1.0804
NaK	18.21	35.13	0.0479	1.1733	0.7353	1.0131
MgK	12.22	16.48	0.2731	1.0746	0.9607	1.0813
Cr L	16.66	16.65	0.0513	0.5181	1.0718	1.1498
Si L	18.98	16.23	0.2364	0.2175	1.0501	1.1212

Cr-clay-III Figure 4 : SE-micrographs recorded for Cr-III-clay

the molar ratios EDX estimated for the same sample is emphasized and an evidence for the existence of monoclinic-phase with good approximation to molar ratios see (TABLE 1).

From Figure 4, it is so difficult to observe inhomogeneity within the micrograph due to that the powders used are very fine and the particle size estimated is too small.

This indicates that, the actual grain size in the material bulk is smaller than that detected on the surface morphology. Furthermore, particle size wa estimated from both of XRD and SEM analyses and its average found to be in between 25-124nm confiming that solution route synthesis increases the fraction ratio of nanoparticles formation.

In our opinion this structure quality enhanced by polar solven applied (carbon tetra chloride) that privent cooagulation of smaller grains with each other acting as grain size splitter enhancing nano-particle formation as occurred in our results.

COCLUSIONS

The conclusive remarkes inside this article can be summarized in the following points;

Solution technique applying organic solvent (Polar Solvent) as media matrix exhibits structure quality as preparation technique.

Synthetic free-fluoride $Na_4Mg_6M_4Si_4O_{22}.nH_2O$ crystallize in monoclinic phase.

SE-micrographs confirmed that particles size was found in nano-scale (25-135nm).

Gamma-irradiations have a slight effect on both of structural and microstructural parameters.

HP-synthetic micas can applied as cations selectivity for water remediation.

Full Paper «

REFERENCES

- M.Plotze, G.Kahr, R.Hermann; Applied Clay Science, 23, 195-202 (2003).
- [2] F.T.Madsen; Clay Mineral.J., 33, 109-129 (1998).
- [3] D.T.Reed, D.D.Scott, M.F.Weiner; Academic Press-Orlando, 325-338 (1987).
- [4] S.Komarneni, R.Ravella; Current Applied Physics, 8, 104-106 (2008).
- [5] K.O.Adebowale, I.E.Unuabonah, B.I.Olu-Owolabi; Journal of Hazardous Materials, B, 134(1-3), 130-139 (2006).
- [6] Y.Al-degs, M.A.M.Khraisheh, M.F.Tutunji; Water Research, 35(15), 3724-3728 (2009).
- [7] M.A.Al-Ghouti, M.A.M.Khraisheh, M.Tutuji; Chemical Engineering Journal, 104(1-3), 83-91 (2004).
- [8] S.J.Allen, B.Koumanova; Journal of the University of Chemical Technology and etallurgy, 40(3), 175-192 (2005).
- [9] S.Aytas, S.Akyil, M.A.A.Aslani, U.Aytekin; Journal of Radioanalytical and Nuclear Chemistry, 240(3), 973-976 (1999).
- [10] S.Babel, T.A.Kurniawan; Journal of Hazardous Materials, B, 97(1-3), 219-243 (2003).
- [11] E.P.Barrett, L.G.Youner, P.Halenda; Journal of the American Chemical Society, 73(1), 373-380 (1951).
- [12] K.G.Bhattacharyya, S.S.Gupta; Journal of Colloid and Interface Science, 310(2), 411-424 (2007).
- [13] C.Camilo, G.Carmen, M.Paula; Journal of Chemical Technology & Biotechnology, 80(4), 477-481 (2005).
- [14] J.M.Charnock, K.E.R.England, M.L.Farquhar, D.J.Vaughan; Physica.B, Condensed Matter, 208-209, 457-458 (1995).
- [15] T.N.D.Dantas, A.A.D.Neto, M.C.P.Moura; Water Research, 35(9), 2219-2224 (2001).
- [16] M.K.Doula, A.Ioannou; Microporous Mesoporous Materials, 58(2), 115-130 (2003).

- [17] F.Ekmekyapar, A.Aslan, Y.K.Bayhan, A.Cakici; Journal of Hazardous Materials, 137(1), 293-298 (2006).
- [18] E.Erdem, N.Karapinar, R.Donat; Journal of Colloid and Interface Science, 280(2), 309-314 (2004).
- [19] O.Hamdaouia, E.Naffrechoux; Journal of Hazardous Materials, 147(1-2), 381-394 (2007).
- [20] Y.S.Ho, J.F.Porter, G.McKay; Water, Air, and Soil Pollution, 141(1-4), 1-33 (2002).
- [21] IPCS (International Programme on Chemical Safety) Copper. Environmental Health Criteria 200, Geneva, Switzerland: World Health Organization, (1998).
- [22] A.Kayaa, A.H.Oren; Journal of Hazardous Materials, B, 125(1-3), 183-189 (2005).
- [23] M.A.M.Khraisheh, Y.S.Al-degs, W.A.M.Mcminn; Chemical Engineering Journal, 99(2), 177-184 (2004).
- [24] S.Kubilay, R.Gürkan, A.Savran, T.Sahan; Adsorption, 13(1), 41-51 (2007).
- [25] S.Lazarevic, I.Jankovic-Castvan, D.Jovanovic, S.Milonjic, Dj.Janackovic, R.Petrovic; Applied Clay Science, 37(1-2), 47-57 (2007).
- [26] S.H.Lin, R.S.Juang; Journal of Hazardous Materials, B, 92(3), 315-326 (2002).
- [27] N.Meunier, J.Laroulandie, J.F.Blais, R.D.Tyagi; Bioresource Technology, 90(3), 255-263 (2003).
- [28] T.Mishra, S.K.Tiwari; Journal of Hazardous Materials, B, 137(1), 299-303 (2006).
- [29] A.E.Osmanlioglu; Applied Radiation and Isotopes, 65(1), 17-20 (2007).
- [30] M.Panayotova, B.Velikov; Journal of Environmental Science and Health, A, 37(2), 139-147 (2002).
- [**31**] T.Allard, G.Calas; Applied Clay Science, **43**, 143-149 (**2009**).

Materials Science An Indian Journal