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ABSTRACT 

In this paper, we introduce and study the properties of second type Hukuhara delta derivative 
denoted by (ΔSH–derivative) for fuzzy set-valued functions on time scales whose values are normal, 
convex, upper semicontinuous and compactly supported fuzzy sets in Rn. We establish the existence and 
uniqueness criteria for fuzzy dynamic equations on time scales using Banach contraction principle. For an 
application, we consider the radioactive decay problem and illustrate the advantage of (ΔSH–derivative). 
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INTRODUCTION 

Hukuhara derivative introduced by Hukuhara1 is the starting point for the study of 
Set Differential Equations (SDEs) and later for Fuzzy Differential Equations (FDEs). The 
Hukuhara differentiability (H-differentiability) of fuzzy mapping defined by Puri and 
Ralescu2 was the first approach for modeling the uncertainity of the dynamical systems. 
FDEs are appropriate in modeling of many real-world phenomena, where some 
uncertainities arise due to inexactness and impreciseness. FDEs play an important role both 
in theory and applications3-11. In12-15 the authors studied the existence and uniqueness of the 
solutions of Fuzzy differential equations using H-derivative. But this approach has the 
disadvantage that it leads to solutions which have an increasing length of their support. 
Consequently, this approach cannot reflect the rich behavior of FDEs. Hence, the 
generalization of the concept of H-differentiability can be of great help in the dynamic study 
of FDEs. To overcome this situation, the authors in16,17 introduced the concept of strongly 
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generalized differentiability to study the Fuzzy- number-valued functions. Using this 
generalized differentiability concept, the authors in18 introduced the concept of lateral H-
derivative, which leads to different solutions for FDEs19. In20,21, the authors used the concept 
of generalized Hukuhara difference and studied the interval-valued functions and interval 
differential equations22,23. Recently, in our paper24, we introduced the concept of               
Δg–derivative and Δg–integral using Hukuhara difference and studied various properties of 
fuzzy set-valued functions on time scales. 

A dynamic model describes the behavior of a system by differential or difference 
equations. Hilger25 introduced and developed the theory of time scales that can unify the 
study of discrete and continuous dynamic systems. For calculus on time scales we refer26-31. 
To analyze a real world phenomenon, it is necessary to handle number of uncertain factors. 
In that case, the theory of fuzzy sets is one of the best approaches, which lead us to fuzzy 
dynamical models. Hukuhara derivative of multivalued functions on time scales was 
introduced in32. Hukuhara differentiability of interval-valued functions and interval 
differential equations on time scales using generalized Hukuhara difference was studied in33. 

In this paper, we focus our attention on fuzzy dynamic equations on time scales 
using ΔSH-derivative. We present some sufficient conditions under which the fuzzy dynamic 
equations with ΔSH-derivative on time scales have solutions, which have decreasing level of 
uncertainity. The paper is organized as follows. In section 2, some basic definitions and 
results related to fuzzy and time scale calculus are presented. In section 3, we introduce and 
study the new class of derivative called second type Hukuhara delta derivative (ΔSH-
derivative) for fuzzy set-valued mappings on time scales. In section 4, we establish the 
sufficient condition for the existence and uniqueness of the solution of fuzzy dynamical 
equation on time scales and the results are illustrated with the real world application of 
radioactive decay problem. 

Preliminaries 

In this section, we present some definitions, properties and results on fuzzy and time 
scale calculus, which are useful for later discussion. Let Pk(Rn) denotes the family of all 
nonempty compact convex subsets of Rn. Define the addition and scalar multiplication (• ) 
in Pk(Rn) as usual. Moreover, if α, β ∈ R and A, B ∈ Pk(Rn), then 

AA1 A,β) (αA) (βα B,αAαB)(Aα =••=••+•=+•  

and if α, β ≥ 0 then A.βAαAβ)(α •+•=•+ Let A and B be two nonempty 
bounded subsets of Rn. The distance between A and B is defined by the Hausdorff metric 



Int. J. Chem. Sci.: 14(1), 2016 51

⎭
⎬
⎫

⎩
⎨
⎧ −−=

∈∈∈∈
||ba||inf  sup   ||,ba||  inf  supmax  B)(A, d

AaBbBbAa
H  

where ||.||  denotes the Euclidean norm in Rn. Denote [0,1]},R:{uE nn →= and u 
satisfies (i)-(iv) below where – 

(i) u is normal, i.e., there exists an  n
0 Rx ∈ such that 1,)u(x0 =  

(ii) u is fuzzy convex, 

(iii) u is upper semicontinuous, 

(iv) the closure of 0},/u(x)R{x n >∈  denoted by 0[u] is compact. 

For 1,α0 ≤≤  denote α}/u(x)R{x[u] nα ≥∈= , then from (i)-(iv) it follows that the 

α-level set )(Rp[u] n
k

α ∈  ∀  .10 ≤≤α  

For any nEvu, ∈ , define )[v],([u]dsupv)(u,D αα
H

1α 0 ≤≤
= . 

Lemma 2.1.13 For any nEDC,B,A, ∈  and Rλ∈ , 

(i) D),(En  is a complete metric space 

(ii) B),D(A,C)BC,D(A =++  

(iii) B)D(A,|λ|BλA,D(λ =•• . 

For any nEBA, ∈ , if there exists a nEC∈  such that CBA += , then we call C the 
Hukuhara difference of A and B denoted by BΘA 10. It is known that B ΘA exists in the 
case (B) diam(A) diam ≥ . Also one can verify the following properties for nED C, B, A, ∈ . 

Lemma 2.2.17 Let nEBA, ∈ , then 

(i) If B ΘA exists, then {0}A ΘA = , (ii) A,B Θ B)(A =+  

(ii) If B, ΘA C ΘA  exist, then C),D(B,C) ΘA B, ΘD(A =  

(iii) 0,B)D(A,{0}B ΘA =⇔=  
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(iv) If B ΘA , D Θ C exist, then C).BD,D(AD) Θ CB, ΘD(A ++=  

Let Rb][a,T ∈=  be a compact interval. 

Definition 2.1.4 We say that a mapping nET:F →  is strongly measurable if ∀  
[0,1]α∈  the set valued mapping )(RPT:F n

kα →  defined by α
α [F(t)](t)F =  is (Lebesgue) 

measurable, when )(RP n
k  is endowed with the topology generated by the Hausdorff metric 

.dH   

Definition 2.2.4 Let nET:F → . The integral of F over T, denoted by – 

∫
T

F(t)dt  or ∫
b

a

F(t)dt , is defined levelwise by the equation 

}RT:dt/fF(t){(t)dtF]F(t)[ n

TT
α

α

T

→== ∫∫∫  

where f is a measurable selection for Fα ∀ 0 < α ≤ 1. 

Definition 2.3.13 A mapping nET:F →  is said to be Hukuhara differentiable at 
Tt0 ∈  if there exists a n

0 E)(tF ∈′  such that h)F(t Θ )F(t),F(t Θ h)F(t 0000 −+  exists ∀ h > 
0 sufficiently small such that the limits exist in the topology of En and equal to ).(tF 0′  

h
h)F(t Θ )F(tlim,

h
)F(t Θ h)F(tlim 00

0h

00

0h

−+
+→+→

 

The element )(tF 0′  is called the Hukuhara derivative of F at t0 taken in the metric 

space D),(En . At the end points of T we consider only the one-sided derivatives. For the 
properties on Hukuhara derivative, we refer to13. 

Now, we will present some basic definitions and results related to time scales 
calculus. 

Definition 2.4.28 Let T be a time scale. The forward jump operator T,T:σ →  the 
backward jump operator and the graininess +→ RT:μ are defined by t},s:Tinf{sσ(t) >∈=  

t},s:Tinf{sρ(t) <∈=  t,σ(t)μ(t) −= for T,t ∈ respectively.  
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If t,σ(t) =  t is called right-dense (otherwise: right-scattered), and if t,ρ(t) =  then t is 
called left-dense (otherwise: left-scattered). If T has a left- scattered maximum m, then 

{m}TTk −= . Otherwise TTk = . If RT:f →  is a function, then we define the function 

RT:f σ →  by  (t)) (σ f(t)f σ = ∀ T.t∈  

Definition 2.5.28 Assume that RT:f →  is a function and let .Tt k∈  Then we 
define (t)f Δ  to be the number (provided it exists) with the property that given any 0ε > , 
there is a neighbourhood U of t T)δ) tδ,(tU(i.e., ∩+−= for some 0δ >  such that 

|,sσ(t)|ε|s](t) (t)[σf(s)] t))( [f(σ| f Δ −≤−−− ∀ Us∈  

In this case, (t)f Δ  is called the delta (or Hilger) derivative of f at t. Moreover, f is 

said to be delta (or Hilger) differentiable on T if (t)f Δ  exists ∀ kTt∈ . The function 

RT:f kΔ →  is then called the delta derivative of f on .Tk  

Definition 2.6.28 A function RT:f → is called regulated provided its right-sided 
limits exist(finite) at all right dense points in T and its left-sided limits exist(finite) at all left-
dense points in T and F is said to be rd-continuous if it is continuous at all right-dense points 
in T and its left-sided limits exists(finite) at all left-dense points in T. 

Definition 2.7.28 Let  RT:f →  be a mapping. The mapping RT:g →  is called an 

anti-derivative of f on T if it is differentiable on T and f(t)(t)gΔ =  for Tt∈ . 

Lemma 2.3.28 Assume RT:f →  

(i) If  f is delta differentiable at t, then f is continuous at t. 

(ii) If f is continuous at t and t is right scattered, then f is delta differentiable and 

.
μ(t)

f(t))(t) f(σ(t)f Δ −
=   

(iii) If f is delta differentiable at t, then 

(a)  (t),μ(t)ff(t)(t)) (σ f Δ+=  

(b)  (ρρ(t))μ(ρ(t))ff(t)(t)) (σ f Δ−=  
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Differentiability and integrability of fuzzy set valued functions on time scales 

In this section we define and study the properties of second type Hukuhara delta 
derivative (ΔSH –derivative) for fuzzy set-valued functions on time scales. To facilitate the 
discussion below, we introduce some notation: For Tt∈ the neighbourhood t of T is denoted 
by δ),(t,UU TT =   T)δ)tδ,(t(UT ∩+−=  for some 0.δ >  In the present section we work in 

D).,(En  

Definition 3.1.24 A fuzzy set-valued function nET:F →  has a T-limit nEA∈  at 
Tt0 ∈  if for every 0,ε >  there exists 0δ > such that ε){0}A, Θ D(F(t) ≤  ∀ . Utε T  If F has 

a T-limit nEA∈  at T,t0 ∈ then it is unique and is denoted by F(t).limT
0tt→

−  F is continuous 

at T,t0 ∈  if  F(t)limT
0tt→

− exists and ).F(tF(t)limT 0
0tt

=−
→

 

Definition 3.2. Let nET:F → be a fuzzy set-valued function and .Tt k∈  Then F is 
said to be second type Hukuhara delta differentiable (ΔSH –differentiable) at  ,Tt k∈  if there 
exists n

SH EF(t)Δ ∈ with the property that given any 0,ε >  there is a neighbourhood TU  of  t 
for some 0δ >  such that – 

 μ(t)))(hε(μ(t))))](hF(t)(Δh),Ft Θ (t) (σ D[F sH −−≤−−+   …(3.1) 

 )μ(t))(hε(μ(t))))](hF(t)(Δ)),(t  F(σ Θ h)D[F(t sH +−≤+−−  …(3.2) 

∀ TUh   th,t ∈+− with δho << . We call F(t)ΔSH be the second type Hukuhara 
delta derivative (ΔSH –derivative) of F at t. We say F is ΔSH –differentiable on Tk, if its ΔSH 

derivative exists at each .Tt k∈ The fuzzy set valued function n
SH ET:FΔ → is then called 

the ΔSH –derivative of F on .Tk  

Remark 3.1. Let nET:F →  be a fuzzy set-valued function and .Tt k∈ Then 
Definition 3.2 can be equivalently written as 

(i) For 0 > h < δ sufficiently small, there exists the H-difference F(σ(t) Θ F(t+h)) 
and the limit exists in the metric D.  

 F(t)Δh))F(t Θ (t)) (F(σ
μ(t)h
1lim SH

0h
=+•⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−
−

+→
 …(3.3) 
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(ii) For 0 > h < δ sufficiently small, there exists the H-difference               
F(t – h) Θ F(σ(t)) and the limit exists in the metric D. 

 F(t)ΔF(σ(σ(t) Θ h)(F(t
μ(t)h
1lim SH

0h
=−•⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+
−

+→
 …(3.4) 

Remark 3.2. The ΔSH –derivative defined in Definition 3.2 coincides with the 
equations (2) and (4) in definition 11 of.24 If T = R, the ΔSH –differentiability coincides with 
the Definition 3(ii) of18 and also coincides with the strongly generalized differentiability 
given in Definition 5(ii) of16. 

Theorem 3.1. Let  nET:F → be fuzzy set-valued function and let .Tt k∈  Then 

(i) If F is ΔSH –differentiable at kTt∈ then it is continuous at t. 

(ii) If F is continuous at t and t is right-scattered then F is ΔSH –differentiable at         

t and (t))). F(σ Θ (F(t)
μ(t)
1F(t)) Θ (t)) (F(σ

μ(t)
1F(t)ΔSH •=•=  

(iii) If t is right-dense, then F is ΔSH –differentiable at .Tt k∈ Then 

(t).FF(t)) Θ h)(F(t
h
1

0h
limh))F(t Θ (F(t)

h
1

0h
lim ′=−•

−
→

=+•
−

→ ++  

(iv) If F is ΔSH –differentiable at .Tt k∈  Then  F(t)(t)Δμ  1)( Θ F(t)(t)) F(σ SH−=  
or F(t).(t)Δμ  1)((t))  F(σF(t) SH−+=  

Proof:  The proof is similar to the proof of Theorem 1 in24. 

Example 3.1. Consider 1ET:F →  defined by u,t)(F(t) •−= ∀ T,t∈  where u = (2, 
3 ,4) is a triangular fuzzy number. If R,T = then tσ(t) = and 0.μ(t) =  From17, the H-
differences F(t + h) Θ F(t), F(t) Θ F(t – h)) cannot exists and hence (t)F′ does not exist. From 
Theorem1 (iii), 

h))F(t Θ (F(t)
h
1

0h
lim(t)F +•

−
→

=′                                                 

        
2).3,4,((2,3,4)1)(

(2,3,4))h))(t( Θ (2,3,4)t)((
h
1

0h
lim

−−−=•−=

•+−•−•
−

→
=
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In a similar way, we can prove 2).3,4,((t)) F Θ h)(F(t
h
1

0h
lim

−−−=−•
−

→
 

If Z,T =  then 1tσ(t) += and 1.μ(t) =  Hence every point in Z is right-scattered. 
Then from Theorem 1 (ii) yields that 1EZ:F →   is ΔSH –differentiable and 

F(t)) Θ (t)) (F(σ
μ(t)
1F(t)ΔSH •=  

             
2).3,4,((2,3,4)1)(

(2,3,4)t)( Θ (2,3,4)1)(tF(t) Θ 1)F(t
−−−=•−=

•−•+−=+=
 

Remark 3.3. Let nET:F → be fuzzy set-valued function. Then if F is ΔSH –

differentiable at ,Tt k∈ then there exists 0δ > such that for [0,1]α∈  and for δ,h0 <<  

ααα h)]diam[F(t(t))] (σ diam[Fh)]diam[F(t −≤≤+  

Hence if F is ΔSH –differentiable then α [F(t)] diam  is nonincreasing on kT and hence 
the solution has decreasing length of support i.e. uncertainity decreases as time increases 
which is the main advantage of ΔSH –derivative. 

Theorem 3.2.  Let nET:GF, →  are ΔSH –differentiable at  .Tt k∈  Then, 

(i) The sum nET:GF →+  is ΔSH –differentiable at kTt∈  with  

G(t);ΔF(t)ΔG)(t)(FΔ SHSHSH +=+  

(ii) The H-difference nET:G Θ F →  is  ΔSH –differentiable at kTt∈  with  

G(t);Δ Θ F(t)ΔG)(t) Θ (FΔ SHSHSH =  

(iii) For any constant λ, nET:λF →  is  ΔSH –differentiable at  kTt∈  with 

F(t);ΔλF)(t)(λΔ SHSH •=•  

(iv) The product nET:FG →  is ΔSH –differentiable at  kTt∈  with 

G(t).F(t)ΔF(t)(t))Δ G(σ                     
G(t);(t))Δ F(σF(t)G(t)Δ(FG)(t)Δ

SHSH

SHSHSH

+=
+=

 

Proof: The proof is similar to the proof of Theorem 2 in24. 
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Lemma 3.1. Let nET:F → be fuzzy set-valued function and denote (t),F[F(t)] α
α =  

for each [0,1].α∈  If F is ΔSH –differentiable at  ,Tt k∈  then αF  is also ΔSH –differentiable on 
kT and (t),FΔ[F(t)]Δ αSH

α
SH =  ∀ .Tt k∈  

Proof: If F is ΔSH –differentiable at Tb)[a,t∈  then for δh0 <<  and for any 

[0,1],α∈  we ge h))](tF Θ (t)) (σ[(Fh))]F(t Θ (t)) [(F(σ αα
α +=+  and dividing by μ(t))(h( −−  

and let +→ 0h we have  

                (t).FΔh))](tF Θ (t)) (σ[(F
μ(t)h
1lim αSHαα

0h
=+•⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−
−

+→
 

Similarly, (t).FΔ(t))) (σF Θ h)(t(F
μ(t)h
1lim αSHαα

0h
=−•⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+
−

+→
 

Definition 3.3.24 Let T.I ⊂  A function RI:f →  is called a Δ-measurable sector of 
the fuzzy set valued function nEI:F →  if F(t)f(t)∈ ∀ It∈  and f is said to be regulated Δ -
measurable sector if it is regulated. Similarly, f is said to be rd-continuous Δ-measurable 
sector if it is rd-continuous. 

Definition 3.4.24 A fuzzy set-valued function nET:F → is said to be ΔSH –integrable 
on  TI ⊂   if F has a rd-continuous Δ-measurable sector on I. In this case, we define the           
ΔSH –integral of F on I, denoted by ,s Δ F(s)

I
∫  and defined levelwise by the equation. 

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

∈==
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
∫∫∫ (I)Sf:s f(s)Δ(s)ΔsFs F(s)Δ
I

αF
I

α

α

I

 

where (I),S
αF the set of all ΔSH –integrable sectors of αF  on I. 

Lemma 3.2.24 Let n
T0 Eτ],[t:GF, →  are ΔSH –integrable and have rd-continuous Δ 

–measurable sectors, then we have 

(i) ;s G(s)Δs F(s)Δs G(s)]Δ[F(s)
τ

0t

τ

0t

τ

0t
∫ ∫∫ +=+  
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(ii) +∈•=• ∫∫ Rλ ,s F(s)Δλs F(s)Δλ
τ

0t

τ

0t

 

(iii) ∫ ∫∫ +=
t

0t

τ

t

τ

0t

s F(s)Δs F(s)Δ[F(s)ΔF  

(iv) ∫∫ ≤
t

0t

τ

0t

θ)ΔsD(F(s),θ)s, F(s)ΔD(  

(v) ;s G(s))ΔD(F(s),)s G(s)Δs, F(s)ΔD(
t

0t

τ

0t

τ

0t
∫∫ ∫ ≤  

Theorem 3.4.  Let n
T0 Eτ],[t:F →  be rd-continuous. If F is ΔSH –integrable from t0 

to τ then the fuzzy set-valued function n
T0 Eτ],[t:G → given by T0

t

0t

t],[t t,s F(s)ΔG(t) ∈= ∫  

is continuous on T0 t],[tt∈ . Further for T0 t),[tt∈  and let F be arbitrary at t, if t is right-
scattered, and let F be continuous at t if t is right-dense. Then G is ΔSH –integrable at t and 

F(t)G(t)ΔSH = ∀ .t),[tt T0∈  

Proof: Let T0 t),[tt∈  be right-scattered. Since n
T0 Eτ],[t:G →  is continuous from 

Theorem1 (ii), it follows that G is ΔSH –differentiable at t and hence we have 

F(t).)s F(s)Δ(
μ(t)
1             

)s F(s)ΔΘ s Δ F(s)(
μ(t)
1t)))(G(σG(σ(t)

μ(t)
1G(t)Δ

σ(t)

t

t

0t

σ(t)

0t
SH

=•=

•=•=

∫

∫∫
 

If t is right-dense and F is continuous at t, then from Theorem1 (iii), it follows that  

∫∫∫
+

+

==+
σ(t)

ht

ht

0t

σ(t)

0t

s F(s)Δs F(s)ΔΘF(s)Δ(h)))t(G(σG(σ(t)  

∫∫∫
−−

==−
ht

σ(t)

σ(t)

0t

ht

0t

s F(s)Δs F(s)ΔΘF(s)Δ((t)) (σΘG  h)(G(t  



Int. J. Chem. Sci.: 14(1), 2016 59

Let 0,ε >  by the continuity of F we have – 

( ) ε,ΔsF(t)F(s),D
μ(t)h
1                                                             

s F(t)Δ,F(s)Δ( D
μ(t)h
1F(t)h)),(t(G(σG(σ(t)

μ(t)h
1D

σ(t)

ht

σ(t)

ht

σ(t)

ht
,

<•
−
−

=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
•

−
−

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+•

−
−

∫

∫∫

+

++  

for δh0 <<  sufficiently small. Hence F(t)G(t)ΔSH = ∀  T0 t),[tt∈ . 

Remark 3.4. Let n
T0 Eτ],[t:F →  be rd-continuous. If F is ΔSH –integrable on 

,t),[t T0 then 

.s F(s)ΔΔ1)( )ΘF(tF(τ(
τ

0t
SH0 ∫−=  

Fuzzy dynamic equations on time scales 

In this section we consider a fuzzy initial value problem (IVP) on time scales 

 00
Δ y)y(t y),F(t,y ==  …(4.1) 

Where the derivative Δ denotes the ΔSH –derivative and nnk EET:F →× is rd-
continuous, t0∈ T and .Ey n

0 ∈  Let )E,σ(b))]([a,C n
Trd  be the set of all rd-continuous fuzzy 

functions from  .Eσ(b))][a, n
T →  The solution nk ET:y →  is unique if 0,y(t))D(x(t),sup

kTt

=
∈

 

∀  Tσ(b))][a,t∈ . If x(t) is an antiderivative of y(t))F(t, on kT and which is a ΔSH – 
differentiable solution to (4.1). 

Lemma 4.1. A fuzzy function )E,σ(b))]([a,Cy n
Trd∈ is called a ΔSH– differentiable 

solution to the IVP (4.1) if and only if it satisfies the integral equation 

 ,s y(s))ΔF(s,1)(y(t)y
t

0t
0 ∫−+= ∀  Tσ(b))][a,t∈  …(4.2) 

 ,s y(s))ΔF(s,1)Θ(yy(t)
t

0t
0 ∫−=  Tσ(b))][a,t∈  …(4.3) 
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The following definition and remark are simple extension of Definition 8.14. of28. 

Definition 4.1.  A fuzzy mapping nnk EET:F →×  is said to be  

(i) rd-continuous, if g defined by y(t))F(t,g(t) = is rd-continuous for any 

continuous function nk ET:y → ; 

(ii) Bounded on a set nk ETS ×⊂ , if there exist a constant 0M >  such that 
M)0 y),D(F(t, ≤

)
∀ S;y)(t, ∈  

(iii) Lipschitz continuous on a set nk ETS ×⊂ , if there exist a constant L > 0 such 
that   ),y,LD(y))yF(t,),yD(F(t, 2121 ≤ S;)y(t, ),y(t, 21 ∈  

(iv) Regressive at kTt∈ , if the mapping nn EE:μ(t)F(t,.)id →+ is invertible 
(where id is the identity fuction), and F is regressive on Tk, if F is regressive at 
each .Tt k∈    

Remark 4.1: A Lipschitz function nnk EET:F →×  is regressive on Tk, provided 
the Lipschitz constant L satisfies 1(t)μ  L < ∀  .Tt k∈  

Theorem 4.1: (Local Existence and Uniqueness Theorem) Let nn
T EEb][a,:F →×  

be rd-continuous and Lipschitz continuous with constant L > 0. Then 

(i) If t0 is right-scattered then there exists a unique ΔSH – differentiable solution to 
(4.1) on the interval .σ(b))][a, T  

(ii) If t0 is left-scattered then there exists a unique ΔSH –  differentiable solution to 
(4.1) on the interval Tσ(b))] [a, provided Fis regressive. 

Proof Let )E,σ(b))]([a,CC n
Trd=  be the set of all rd-continuous fuzzy functions 

from n
T Eσ(b)][a, → . Define the operator CC:A1 → by – 

∫−=
t

0t
01 s, y(s))ΔF(s,1)Θ(yy](t)[A   Tσ(b))][a,t∈  

From Lemma 7 CyA1 ∈ . Considering the metric ρD on C, defined by – 

{ } C,y     x,,(s,0))y(s))e(s,D(x supy)(x,D ρρ

Tσ(b)][a,s
∈= −

∈
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Where 0ρ >  large enough such that 1
ρ
(T,0)e1 ρ <

− −  

Clearly, )D),E,σ(b))]([a,(C ρ
n

Trd is a complete metric space. Furthermore, by Lemma 

6 and by the Lipschitz continuity of F we have – 

{ }

( )

                     (t,0)e Δs  (s,0)ey)(x,Dsup                      

(t,0)e  Δs  (s,0)e  (s,0)e  y(s))D(x(s),sup                      

(t,0)e s y(s))ΔD(x(s),sup                      

(t,0)e  Δsy(s))F(s,    x(s)),F(s,Dsup                      

(t,0)e  s y(s))ΔF(s,  x(s))Δ(sF(s, Dsup                     

(t,0)e  s y(s))ΔF(s,1)Θ(y   x(s))Δ(sF(s,1)Θ(y Dsup                     

(t,0)y](t))e[Ax](t),([A Dsupy)Ax,(AD

ρ

t

0
ρρ

t
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0
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t
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0
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00

ρ1111ρ

Tσ(b)][a,t
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y) (x,D  
ρ

0) (T,e1
ρ

(t,0)e1
supy) (x,D

(t,0)e   
ρ
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supy) (x,D 
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Therefore Tσ(b)])([a,Cyx,   y),(x,D  
ρ
(T,0)e1

y)Ax,(AD rdρ
ρ

11ρ ∈∀⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
≤ −  

So, A1 is a contraction mapping. Hence by Banach contraction mapping theorem A1 
has unique ΔSH – differentiable solution λ to the IVP (4.1). 
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(i) If t0 is right-scattered then is uniquely determined. 

),y,μ(t)F(ty)(tλμ(t))(tλ))(t (σλ 000000
Δ +=+=
rrr

 

Hence (4.1) has unique ΔSH – differentiable solution on ,(b)] σ[a, T when t0 is right-

scattered. 

(ii) If t0 is left-scattered then 

)).(t (ρ λ.))  ),(t (ρ μF(id                  

)))(t (ρλ),(t (ρ F ))(t (ρμ ))(t (ρ λ)(t λy

00

000000
Δ

r

rrr

+=

+==
 

Since Fis regressive, 0
1

00 y.)) ),(t (ρ μF(id))(t (ρ λ −+=
r

is uniquely determined. Hence 
(4.1) has unique solution on ,(b)] σ[a, T when t0 is left-scattered. 

The following example illustrates the importance of ΔSH –derivative. 

Example 4.1. Let us consider the radioactive decay problem. As radioactive decay is 
entirely a random process, it is impossible to predict which atoms of the radioactive 
substance is undergoing radioactive decay at a moment of time which can be modeled by the 
fuzzy dynamic equation 

 0
Δ yy(0) y(t),k(t)y =•−=  …(4.4) 

Where y(t) denotes the number of radioactive nuclei present at time t > 0, k is the 
proportionality constant for the radioactive substance, Δ denotes the ΔSH – derivative and y0 
∈ En. In this problem, the uncertainity is introduced in y0 due to uncertain information on the 
initial number of radioactive nuclei present in the substance. Let y0 = (1, 2, 3), a triangular 
fuzzy number, k = 1 and time scale T = R, then the corresponding solution of (4.4) is – 

 )3e ,2e ,(e3) 2, (1,ey(t) tttt −−−− =•=  …(4.5) 

As 0,e   ,t t →∝→ − i.e. uncertainity decreases with time t and disappears 
asymptotically, which is represented as in Fig. 1. Since radioactivity of a material always 
decreases with time, this ΔSH – differentiable solution is the appropriate solution for the 
modeling of radioactive decay problem under the presence of uncertainity. 
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Fig. 1: Solution of the fuzzy dynamical equation (4.4) using ΔSH –differentiability 

Hence, under the assumptions of Theorem 4.1., it is easy to find out the solution for 
(4.5) as we move forward with time but Lipschitz continuity on F alone is not sufficient as 
we move backward in time which can be seen from the following example. 

Example 4.2. Consider the fuzzy dynamic equation 

 0
Δ yy(0) y(t),(t)y =−=  …(4.6) 

With the time scale T = Z. Hence (4.6) becomes ,yy(0)    y(t),Δy(t) 0==  where Δ is 
the forward difference operator.  Hence F(t, y) = – y Clearly, 

),y,D(y))yF(t, ),yD(F(t, 2121 ≤  

and hence F is Lipschitz continuous with L = 1. Moreover, we have N.t 0,y(t) ∈∀=  
However the solution does not exist at –t for t ∈ N.  Since μ(t) = 1 for the time scale T = Z 
and hence F is not regressive from Remark 5. Hence a solution could exist for all times but 
may not be unique, if regressivity is not satisfied. 

CONCLUSION 

In this paper, we deal with fuzzy dynamic equations on time scales with second type 
Hukuhara delta derivative (ΔSH – derivative). These dynamic equations are appropriate tool 
for the engineers in modeling the dynamical systems under the presence of uncertainity 
caused by the lack of exact information about the parameters of dynamical systems. The 
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radioactive decay problem is considered with uncertain information on initial condition and 
illustrated existence and uniqueness result when time scale T = R and T = Z. The advantage 
of this ΔSH – derivative is that the solutions of the corresponding fuzzy dynamic equations 
have decreasing length of uncertainity as the time increases. 
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