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We show that the Standard Model (SM) represents a self-contained multifractal set on spacetime
having arbitrarily small deviations from four-dimensionality (D = 4 � ,  <<1). All coupling
charges residing on this background (gauge, Higgs and Yukawa) satisfy a closure relationship
that a) tightly constrains the flavor and mass content of the SM and b) naturally solves the
�hierarchy problem�, without resorting to new concepts reaching beyond the physics of the
SM.
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INTRODUCTION AND MOTIVATION

The Standard Model for particle physics (SM) has been
successfully tested at all accelerator facilities and is the best
tool available for understanding the phenomena on the
subatomic scale[1-3]. The prevailing view is that the SM
represents only the low-energy limit of a more funda-
mental theory and that it can be consistently extrapolated
to scales many orders of magnitude beyond the energy
levels probed by the Large Hadron Collider. Despite its
impressive performance, the SM leaves out a fairly large
number of unsolved puzzles[2,4]. We mention here three
of these open questions that are relevant for the context
of our work:
(a) Is the Higgs boson solely responsible for the electroweak symme-

try breaking and the origin of mass? The current view sup-
ports this assertion, although understanding of the
Higgs sector remains widely open at this time[4]. There
are two primary mass-generation mechanisms in the
SM: the Higgs mechanism of electroweak symmetry
breaking, accounting for the spectrum of massive gauge
bosons and fermions, and dimensional transmutation,
partially responsible for the mass of baryonic matter.
While technical aspects of both mechanisms are well
under control, neither one is able to uncover the origin

of the electroweak scale or of the Higgs boson mass.
(b) Are fundamental parameters of the SM finely tuned? The mass

of the Higgs boson is sensitive to the physics at high
energy scales. If there is no physics beyond the SM,
the elementary Higgs mass parameter must be adjusted
to an accuracy order of 1 part in 1032 in order to ex-
plain the large gap between the TeV scale and the Planck
scale[2].

(c) What is the origin of quark, lepton and neutrino mass hierar-
chies and mixing angles? These �flavor� parameters ac-
count for most of the basic parameters of the SM,
and their pattern remains elusive. New particles at or
above the TeV scale with flavor-dependent coupling
charges are postulated in many scenarios, and obser-
vation of such particles would provide critical insights
to these puzzles[2].
In contrast with the majority of mainstream propos-

als on �Beyond the SM Physics� (BSM)[5], the approach
developed here exploits the idea that space-time dimen-
sionality becomes scale-dependent near or above the low
TeV scale. This conjecture has recently received consider-
able attention in theoretical physics and goes under several
designations, from �continuous dimension� to �dimensional re-
duction�, to �non-integer metric� and �fractional field theory�[6-9].
The motivation for model building based on this conjec-
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ture can be also found in[6-9,13,14].
Drawing from the idea of scale-dependent dimen-

sionality, we show that the SM represents a self-contained
multifractal set defined on ordinary spacetime having arbi-
trarily small deviations from four-dimensions ( << 1).
In what follows, we refer to such spacetime as �minimal
fractal manifold� (MFM). We find that all coupling charges
residing on the MFM satisfy a closure relationship that a)
fixes the flavor and mass content of the SM and b) natu-
rally solves the hierarchy problem, without resorting to
new concepts or degrees of freedom reaching beyond
the physics of the SM.

The paper is organized in the following way: relevant
definitions and assumptions are introduced in section 2;
the modification of a generic action functional living on
the MFM is detailed in section 3. The next section ex-
plores the consequences of placing classical electrodynamics
of charged fermions on MFM. Expanding on these ideas,
section 5 reveals how the mass and flavor content of the
SM may be derived from the properties of the MFM.
The ensuing multifractal structure of the SM and the pro-
posed resolution of the hierarchy problem form the topic
of sections 6 and 7. Two Appendix sections are included
to make the paper self-contained.

We caution from the outset that ideas outlined here
are entirely provisional. They require further consolidation
and independent validation or rebuttal.

DEFINITIONS AND ASSUMPTIONS

(A1) Our work deals exclusively with the behavior of
field theory on MFM, defined as a continuous spacetime
of dimension D = 4  , where  << 1. This cross-over
regime between   0 and  = 0 is the only sensible setting
where the dynamics of interacting fields is likely to as-
ymptotically approach all consistency requirements im-
posed by Quantum Field Theory (QFT) and the SM[10,11].
Large deviations from four dimensions (~O(1)) may sig-
nal the breakdown of these requirements. Particular atten-
tion needs to be paid, for example, to the potential viola-
tion of Lorentz invariance in Quantum Gravity theories
advocating the emergence of spacetime of lower dimen-
sionality at high energy scales[12-14].

From the standpoint of interacting field theory, a non-
vanishing and arbitrarily small deviation from four dimen-
sions is equivalent to allowing the Renormalization Group
(RG) equations to slide outside the isolated fixed points
solutions (FP)[15]. Recalling that FP are synonymous with
equilibria in the dynamical systems theory, it follows that,
in general, the evolution of quantum fields is no longer
required to settle down to equilibrium states. The end re-
sult is that the condition  << 1 enables the isolated FP of
the RG equations to morph into attractors with a more

complex structure[15,16].
(A2) u

0
 is the reference charge distribution on MFM

for a fixed  << 1 (fixed number of dimensions),
(A3) u  is the effective charge distribution on MFM

when  << 1 is allowed to vary (i.e., the number of di-
mensions is allowed to evolve with the energy scale),

(A4) 
0
, g

0
, y

0,f
 are the coupling charges for the scalar,

gauge and Yukawa sectors of the Standard Model, mea-
sured at the electroweak scale defined by M

EW
 in ordinary

four dimensional spacetime ( = 0).
(A5) Any theory exploring physics beyond the Stan-

dard Model (BSM) must fully recover the principles and
the framework of perturbative QFT at energy scales ap-
proaching M

EW
. In particular, it needs to preserve unitarity,

renormalizability and local gauge invariance and be com-
patible with precision electroweak data[10,17].

THE MINIMAL FRACTAL MANIFOLD (MFM)

Field theory on fractional four-dimensional spacetime
is described by the action

 
4( ) (v( ) )S d x L x d x L

 

 

   (1)

where the measure d(x) denotes the ordinary four-di-
mensional volume element multiplied by a weight func-
tion v(x)[13,14]. If the weight function is factorizable in co-
ordinates and positive semidefinite, v(x) assumes the form
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3
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x
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in which

0 < 
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  1 (3)

are four independent parameters. An isotropic spacetime
of dimension D = 4   is characterized by

 

1
4
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   
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which turns (2) into

v(x)  (x4) (5)

Dimensional analysis requires all coordinates entering
(2) and (5) to be scalar quantities. They can be generically
specified relative to a characteristic length and time scale,
as in

 0

0

x
x

L




  (6)

in which , 
0
 are positive-definite energy scales. Relation

(5) becomes
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0

v( ) ( )x 
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 (7)
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such that
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(8)

Choosing  < 
0
 we can expand (7) as[18]:

a = e ln a  1 +  ln a (9)

which yields

 

0

v( ) 1 4 ln( ) 1 4 ln( )x x


 


    (10)

EMERGENCE OF EFFECTIVE FIELD
CHARGES ON THE MFM

A remarkable property of fractal spacetime is the
emergence of �effective� coupling charges induced by
polarization in non-integer dimensions[13,19]. To fix ideas,
consider the case of classical electrodynamics coupled to
spinor fields in a MFM with evolving dimensionality[13].
From (10) we obtain

 2 2
0v( )e x e   

 2
0

0

1 4 ln( )

e







(11)

where, following definitions A2) and A3),

00 ueue  ,

In light of assumption A5), (11) has to match the ex-
pression of the running charge in perturbative Quantum
Electrodynamics (QED). At one loop, this expression
reads[20]

 2
2 0

2
0

2
0

1 ln( )
6

e
e

e 

 





(12)

Comparing (11) with (12) leads to:

 2
0 ( )e O  (13)

This finding reveals that the dimensional parameter 
represents the physical source of the field charge in ordi-
nary four-dimensional spacetime. As previously alluded
to, this �dynamic generation� of effective field charges
can be traced back to the intrinsic polarization induced by
fractal spacetime. The process is strikingly similar to the
emergence of non-trivial fixed points in the Landau-
Ginzburg-Wilson model of critical behavior in D = 4 � 
dimensions[15,18]. The discussion may be extrapolated from
electrodynamics to classical gauge theory and, as we show
next, it sets the stage for a novel interpretation of mass
and flavor hierarchies present in the SM.

THE MASS AND FLAVOR HIERARCHIES OF
THE STANDARD MODEL

Analysis of the RG equations in slightly less than four-

dimensions reveals that, near the electroweak scale, the
normalized masses of fermions (m

f
), weak bosons (M)

and electroweak gauge charges (g
0
) scale as[9,15,21]

m
f
 ~  (14)

å~g 2

0
(15)

 2 2 2
0g M const M  ~ �1 (16)

It can be also shown that the system of RG equations
lead in general to a transition to chaos via period-dou-
bling bifurcations as   0[9,15,21]. The sequence of critical
values 

n
, n = 1, 2, � driving this transition to chaos satis-

fies the geometric progression


n
 � 


 = 

n
 � 0 ~  

n

nk 


(17)

Here, n >> 1 is the index counting the number of

cycles created through the period-doubling cascade, ä  is

the rate of convergence and k
n
 is a coefficient that be-

comes asymptotically independent of n as n  . Pe-
riod-doubling cycles are characterized by n = 2i, for i >>
1. Substituting (17) in (14) and (15) yields the following
ladder-like progression of critical couplings

 
,f im ~  2

0,ig  ~  2 i


 (18)

Scaling (18) recovers the full mass and flavor content
of the SM, including neutrinos, together with the coupling
strengths of gauge interactions. Specifically,
 The trivial FP of the RG equations consists of the

massless photon () and the massless UV gluon (g).
 The non-trivial FP of the RG equations is degenerate

and consists of massive quarks (q), massive charged
leptons and their neutrinos (l, v) and massive weak
bosons (W, Z).

 Gauge interactions develop near the non-trivial FP and
include electrodynamics, the weak interaction and the
strong interaction.

MULTIFRACTAL STRUCTURE OF THE
STANDARD MODEL

A key parameter of the RG analysis is the dimension-

less ratio 
 ( )

UV


 , in which  is the sliding scale and 

UV

>>  the high-energy cutoff of the underlying theory.
With reference to a field theory embedded in four dimen-
sions (D = 4), the connection between the parameter  =
4 � D and 

UV
 is given by[15,21,22]

 ~ 
 

2

2

1

log( )UV




(19)

The large numerical disparity between  and 
UV

 en-
ables one to approximate  as in
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 ~ 
 2( )

UV




(20)

Let m
i
 denote the full spectrum of particle masses

present in the SM. Relation (20) can be written as

 2 2
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in which
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and

 2

0

i
ir




 (23)

With reference to (b.3) of Appendix B, we find that
(23) obeys a closure relationship typically associated with
multifractal sets, namely[22]:

 2 2( ) 1i
i

i i EW

m
r

M
   (24)

in which the sum in the left-hand side extends over all SM
fermions (leptons and quarks).

Relation (24) may be alternatively cast in terms of SM
field charges. We obtain
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

From either (24) or (25) one derives

M
EW

 ~ V = 246.2 GeV (26)

inclose agreement with the vacuum expectation value of
the SM Higgs boson (V). In closing, we mention that the
existence of (25) was first brought up in[24], with no at-
tempt of formulating a theoretical interpretation.

DISCUSSION: SOLVING THE FLAVOR AND
HIERARCHY PROBLEMS ON THE MFM

Relations (18), (24) and (25) tightly constrain the par-
ticle content of the SM. They naturally fix its number of
independent field flavors near the electroweak scale. Also,
since all scaling ratios in (24) must have a magnitude of
less than one unit, (24) and (25) necessarily imply that the

mass of the Higgs boson cannot grow beyond M
EW

, at
least near the electroweak scale. This conclusion brings
closure to the hierarchy problem, whose formulation is briefly
outlined in Appendix A.

Appendix A: The Hierarchy problem

Electroweak (EW) symmetry in the SM is broken by
a scalar field having the following doublet structure[23]:

 

01 [( V) ]
2

G

H iG

 
  
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 

(a.1)

Here, G+
 and G0 represent the charged and neutral

Goldstone bosons arisen from spontaneous symmetry
breaking, H is the SM Higgs boson, V  M

EW
 = 246 GeV

is the Higgs vacuum expectation value. Symmetry break-
ing is caused by the Higgs potential, whose form satisfies
the requirements of renormalizability and gauge-invari-
ance:

 2 2
0( , ) ( )HV    

       (a.2)

with 
0
 O(1) and  2

H   2( )EWO M . A vanishing quartic cou-

pling (
0
 = 0) represents the critical value that separates the

ordinary EW phase from an unphysical phase where the
Higgs field assumes unbounded values. Likewise, the co-

efficient  2
H  plays the role of an order parameter whose

sign describes the transition between a symmetric phase
and a broken phase. Minimizing the Higgs potential yields
an expectation value given by:

 2
2

0
V ( )H


  (a.3)

where the physical mass of the Higgs is:

 2 2 2
02 V 2H HM     (a.4)

The renormalized mass squared of the Higgs scalar
contains two contributions:

 2 2 2
0,H H     (a.5)

in which  2
0,H  represents the ultraviolet (bare) value. This

mass parameter picks up quantum corrections 2 that
depend quadratically on the ultraviolet cutoff 

UV
 of the

theory. Consider for example the contribution of radia-

tive corrections to  2
H  from top quarks. The complete

one-loop calculation of this contribution reads:

 2
2 2 2

2
[ 2 6 ln( ) ...]
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c t UV

UV t
t
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
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


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in which 
t
 and M

t
 are the Yukawa coupling and mass of

the top quark. If the bare Higgs mass is set near the cut-

off  2 2 2
0, ( ) ( )H PlO O M    , then 2  �1035 GeV2. This

large correction must precisely cancel against  2
0,H  to pro-
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tect the EW scale. This is the root cause of the hierarchy
problem, which boils down to the implausible require-

ment that  2
0,H  and 2 should offset each other to about

32 decimal places.

Appendix B: A primer of fractals and multifractals

We highlight here few basic concepts and terminol-
ogy pertaining to fractals and multi-fractals. Fractals are
geometrical objects with non-integer dimensions that dis-
play self-similarity on all scales of observation[18]. The con-
cept of dimension plays a key role in the geometry of fractal
sets. It is customary to characterize fractals by an ensemble
of three dimensions, namely:

1) The Euclidean dimension �D = 1, 2, 3 �� repre-
sents the dimension of the space where the object resides
and is always an integer.

2) The topological dimension �d
T
  D� describes the

dimensionality of continuous primitive objects such as
points, curves, surfaces or volumes (d

T
 = 0,1,2,3 in ordi-

nary four-dimensional spacetime).
3) The definition of the fractal (or Hausdorff) dimen-

sion is as follows: Cover the fractal object by d � dimen-
sional balls of radius �� and let �N()� be the minimum
number of balls needed for this operation. The fractal
dimension �D

H
� satisfies the inequality d

T
  D

H
  D and is

given by

 
0

lim ( ) HDN 


   (b.1)

leading to
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log ( )
lim [ ]

logH

N
D







(b.2)

Many of the self-similar structures in fractal geometry
are built recursively, a typical example being the Cantor set.
To construct a Cantor set in one dimension (D = 1), take
a line segment called the generator, split it into thirds and
remove the middle third. Iterate this process arbitrarily
many times. One is left with a countable set of isolated
points having a non-integer fractal dimension D

H
, with d

T

= 0  D
H
  D = 1. A simple Cantor set generated from

segments of equal length is defined by a single scaling

factor  1
3r  <1. By contrast, more general fractals (such

as multifractals) can be created using generator segments of
different scaling factors r

i
<1, i = 1,2, �, N satisfying the

closure relation

 

1

1H

N
D

i
i

r


 (b.3)

Many strange attractors of nonlinear dynamical sys-
tems represent multifractals and are typically characterized
by a continuous spectrum of Hausdorff dimensions[18].
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