

FILTERS IN TERNARY SEMIGROUPS

G. JAYA LALITHA^{a*}, Y. SARALA^b, B. SRINIVASA KUMAR^c and P. BINDU^a

^aDepartment of Mathematics, K. L. University, GUNTUR (A.P.) INDIA ^bFaculty of Mathematics, National Institute of Technology, (A.P.) INDIA ^cFaculty of Mathematics, K. L. University, GUNTUR (A.P.) INDIA

ABSTRACT

In this article the ternaryfilters in a ternary semigroup are considered. The characterization of a ternary filter of T interm of the primeideals and some relations between the semilattice congruence N and the set of primeideals of the ternarysemigroup T are given.

Key words: Filter, Principal Filter.

INTRODUCTION

Lee and Lee¹ introduced the notion of a left (right) filters in a po-semigroup and gave a characterization of the left (right) filters of T interms of the right (left) prime ideals. Kwon² and Kostaq³ characterized filters in ordered semigroups. Rao et al.⁴ defined some relations between the filters of partially ordered Γ -semigroups S. In this paper, the characterization of a ternary filter of T interm of the primeideals and some relations between the semilattice congruence N and the set of primeideals of the ternary semigroup T are given.

Definition 2.1: A ternary semigroup F of a ternary semigroup T is known as a filter of T if $a, b, c \in T$; $abc \in F \Rightarrow a, b, c \in F$

Example 2.2: Let $T = \{x, y, z, w\}$ with the multiplication defined by

 $abc = \begin{cases} x, & \text{if } a = b = c = x \\ y, & \text{if } a = b = c = y \\ z, & \text{if } a = b = c = z \\ w & \text{if } otherwise \end{cases}$

^{*}Author for correspondence; E-mail: jayalalitha.yerrapothu@gmail.com

Then T is a ternary semigroup and $\{x, y, z, w\}$, $\{y\}$, $\{z\}$, $\{w\}$ are all filters of T.

Theorem 2.3: Let F_1, F_2 be the two filters of a ternary semigroup T. Then the intersection $F_1 \cap F_2$, if it is nonempty is a filter of T.

Proof: Let F_1, F_2 be the two filters of T. Let $a, b, c \in T$; $abc \in F_1 \cap F_2$.

 $abc \in F_1 \cap F_2 \Rightarrow abc \in F_1$ and $a, b, c \in F_2 \cdot a, b, c \in T$; $abc \in F_1$; F_1 is a filter of T $\Rightarrow a, b, c \in F_1 \cdot a, b, c \in T$; $a, b, c \in F_2$; F_2 is a filter of T $\Rightarrow a, b, c \in F_2 \cdot a, b, c \in F_1$; $a, b, c \in F_2 \Rightarrow a, b, c \in F_1 \cap F_2$, $a, b, c \in T$; $abc \in F_1 \cap F_2 \Rightarrow a, b, c \in F_1 \cap F_2$. Therefore $F_1 \cap F_2$ is a filter of T.

Theorem 2.4: The nonempty intersection of a family of ternary filters of a ternary semigroup T is also a ternary filter.

Proof: Let
$$F = \bigcap_{\alpha \in \Delta} F_{\alpha}$$
. Let $a, b, c \in T$; $abc \in F$. Now $abc \in F \Rightarrow abc \in \bigcap_{\alpha \in \Delta} F_{\alpha} \Rightarrow$
 $abc \in F_{\alpha}$ for each $\alpha \in \Delta$. $abc \in F_{\alpha}$; F_{α} is a ternary filter of $T \Rightarrow a, b, c \in F_{\alpha}$ for each $\alpha \in \Delta$
 $\Rightarrow a, b, c \in \bigcap_{\alpha \in \Delta} F_{\alpha} \Rightarrow a, b, c \in F$. Therefore F is a ternary filter of T.

Note 2.5: In general, the union of two ternary filters is not a ternary filter.

Example 2.6: As in the example 2.2, T is a ternary semigroups and $\{y\}$, $\{z\}$, $\{w\}$ are ternary filters, but $\{y\} \cup \{z\} \cup \{w\}$ is not a ternary filter of T, because yzw = x is not in $\{y\} \cup \{z\} \cup \{w\}$.

In this paper, the characterization of a ternary filter of T interm of the primeideals is given.

Theorem 2.7: Let T be a ternary semigroup and F be a nonempty subset of T. The succeeding are equivalent:

- (i) F is a filter of T.
- (ii) $T \setminus F = \phi$ or $T \setminus F$ is a prime ideal.

Proof: (i) \Rightarrow (ii) Let $T \setminus F = \phi$. Then $T \setminus F$ is a primeideal of T. Infact: Since $T \setminus F \neq \phi$, we take $a, b \in T$; $c \in T \setminus F$. If $abc \in F$; F is a filter of T, we have $a, b, c \in F$. It is impossible. Thus we have $aaa \in T \setminus F$, $bbb \in T \setminus F$. i.e. $TT(T \setminus F) \subseteq T \setminus F$; $(T \setminus F)TT \subseteq T \setminus F$ and $T(T \setminus F)T \subseteq T \setminus F$. Let $a, b, c \in T$ and $abc \in T \setminus F$. If $a \in F$; $b \in F$ and $c \in F$ then since F is a sub ternary semigroup of T, $abc \in F$. It is impossible. Hence we have $a \in T \setminus F$ or $b \in T \setminus F$ or $c \in T \setminus F$.

(ii) \Rightarrow (i) Let $T \setminus F = \phi$. Since T = F; F is a filter of T. Suppose that $T \setminus F$ is a primeideal of T. Then F is a subsemigroup of T. Infact: $a, b, c \in F$. If $abc \in T \setminus F$, since $T \setminus F$ is prime, $a \in T \setminus F$ or $b \in T \setminus F$ or $ca \in T \setminus F$. It is impossible. Thus we have $abc \in F$. Let $a, b, c \in T$; and $abc \in F$. If $a \in T \setminus F$ then, since $T \setminus F$ is an ideal of T; $abc \in T \setminus F$. It is impossible. If $a \in T \setminus F$ then, since $T \setminus F$ is an ideal of T; $abc \in T \setminus F$. It is impossible. If $b \in T \setminus F$ then, since $T \setminus F$ is an ideal of T; $abc \in T \setminus F$. It is impossible. If $b \in T \setminus F$ then, since $T \setminus F$ is an ideal of T; $abc \in T \setminus F$. It is impossible. If $b \in T \setminus F$ then, since $T \setminus F$ is an ideal of T; $b \in T \setminus F$. It is impossible. If $b \in T \setminus F$ then, since $T \setminus F$ is an ideal of T; $b \in F \setminus F$. It is impossible. If $b \in T \setminus F$. It is impossible. Thus, we have $a \in F$; $b \in F$ and $c \in F \cup F$ is a filter of T.

Now we introduce the notion of a ternary filter of T generated by A.

Definition 2.8: Let T be a ternary semigroup and A be a nonempty subset of T. The smallest filter of $T \subseteq A$ is said to be a ternary filter of T generated by A and is symbolized by $F_t(A)$.

Theorem 2.9: The ternary filter of a ternary semigroup T generated by a nonempty subset A of T is the intersection of all ternary filters of $T \subseteq A$.

Proof: Let Δ be the set of all ternary filter of $T \subseteq A$. Since T itself is a ternary filter of $T \subseteq A$, $T \in \Delta$. So $\Delta \neq \phi$. Let $F^* = \bigcap_{\alpha \in \Delta} F_{\alpha}$. Since $A \subseteq F \quad \forall F \in \Delta, A \subseteq F^*$. So $F^* \neq \phi$. By theorem 2.4, F^* is a ternary filter of T. Let K be a ternary filter of $T \subseteq A$. Clearly $A \subseteq K$ and K is a ternary filter of T. Therefore F^* is the smallest ternary filter of $T \subseteq A$ and F^* is the ternary filter of T generated by A.

We now introduce the notion of a principal ternary filter of a ternary semigroup.

Definition 2.10: A ternary filter F of a ternary semigroup T is known as a principal filter provided F is a ternary filter generated by $\{a\}$ for some $a \in T$. It is symbolized by $F_t(a)$.

Example 2.11: As example 2.2; T is a ternary semigroup and $F_t(x) = \{x\}$; $F_t(y) = \{y\}$; $F_t(z) = \{z\}$ are all the principal ternary filters of the ternary semigroup T.

Corollary 2.12: Let T be a ternary semigroup and $\alpha \in T$. Then $F_t(a)$ is the least ternary of $T \subseteq \{a\}$.

Proof: For every $\alpha \in T$, the intersection of all ternary filter containing $\{a\}$ is again a ternary filter and thus the least ternary filter containing $\{a\}$.

We now introduce the notion of a semilattice congruence on T.

Let T be a ternary semigroup and I be a primeideal of T. We define a relation R₁ on T as follows. $R_I = \{(a, b, c) \mid a, b, c \in I \text{ or } a, b, c \notin I\}$. Then R_I is a semilattice congruence on T. We denote N(a) the filter of T generated by $a (\alpha \in T)$. We symbolized by N the equivalence relation on M defined $N = \{(a, b, c) \mid N(a) = N(b) = N(c)\}$.

Theorem 2.13: Let T be a ternary semigroup. The succeeding statement hold true:

$$N = \bigcap \{ R_I \mid I \in I(T) \}$$

where is the set of primeideals T.

Proof: Let (*a*, *b*, *c*) ∈ *N* and *I* ∈ *I*(*T*). Let (*a*, *b*, *c*) ∉ *R*. Then *a* ∉ *I* and *b*, *c* ∉ *I* or *a* ∈ *I* and *b*, *c* ∉ *I*. Then $\phi \neq T \setminus I \subseteq T$ and *a* ∉ *T \ I*. Since *TT \ (T \ I)* = *I*, *TT \ (T \ I)* is a primeideal of T. By the Lemma (T \ I) is a filter of T. Since *a* ∈ *T \ I*, we have $N(a) \subseteq T \setminus I$ and thus $b, c \in T \setminus I$. It is impossible. Similarly from *a* ∉ *I* and *b*, *c* ∈ *I* we get a contradiction. Thus we have $N \subseteq \bigcap_{I \in I(T)} R_I$. Conversely, let $(a, b, c) \in R_I$ for all $I \in I(T)$. If $(a, b, c) \notin N$, then $a \notin N(b)$ or $b \notin N(b)$ or $c \notin N(b)$. Infact, if $a \in N(b)$, $b \in N(c)$ and $c \in N(a)$, then $N(a) \subseteq N(b)$, $N(b) \subseteq N(c)$ and $N(c) \subseteq N(a)$ and so $(a, b, c) \notin N$. Let $a \notin N(b)$. Then $a \in T \setminus N(b)$ and thus $T \setminus N(b) \neq \phi$. Since N(b) is a filter of T, by the lemma, $T \setminus N(b)$ is a primeideal of T. Therefore we have $T \setminus N(b) \in I(T)$, $a \in T \setminus N(b)$ and $b, c \notin T \setminus N(b)$, i.e $T \setminus N(b) \in I(T)$ and $(a, b, c) \notin R_{T \setminus N(b)}$ we get a contradiction. Similarly, from $b, c \notin N(a)$, we have a contradiction.

CONCLUSION

This concept is used in filters of chemistry, physical chemistry, electronics, etc.

REFERENCES

- 1. S. K. Lee and S. S. Lee, Left (Right) Filters on Po-Semigroups, Kangweon-Kyungki Mathematics J., **8**(1), 43-45 (2000).
- 2. Y. I. Kwon, The Filters of Ordered Γ-Semigroups, Journal of Korea Society of Mathematical Education: The Pure and Applied Mathematics, **4**, 131-135 (1997).
- 3. H. Kostaq, Filters in Ordered Γ-Semigroups, Rocky Mountain Journal of Mathematics, **41(1)**, 189-203 (2011).
- 4. S. V. B. S. Rao, A. Anjaneyulu and D. Madhusudhanarao, Po-Γ-Filters in Po-Γ-Semigroups, Int. J. Mathe. Sci., Technol. Humanities, **62**, 669-683 (2012).

Revised : 27.10.2016

Accepted : 30.10.2016