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ABSTRACT 

In this article the ternaryfilters in a ternary semigroup are considered. The characterization of a 
ternary filter of T interm of the primeideals and some relations between the semilattice congruence N and 
the set of primeideals of the ternarysemigroup T are given.  
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INTRODUCTION 

Lee and Lee1 introduced the notion of a left (right) filters in a po-semigroup and 
gave a characterization of the left (right) filters of T interms of the right (left) prime ideals. 
Kwon2 and Kostaq3 characterized filters in ordered semigroups. Rao et al.4 defined some 
relations between the filters of partially ordered Г-semigroups S. In this paper, the 
characterization of a ternary filter of T interm of the primeideals and some relations between 
the semilattice congruence N and the set of primeideals of the ternary semigroup T are given.  

Definition 2.1: A ternary semigroup F of a ternary semigroup T is known as a filter 

of T if , , ;a b c T∈ , ,abc F a b c F∈ ⇒ ∈ . 

Example 2.2:  Let { }, , ,T x y z w=  with the multiplication defined by  

, if
, if
, f

if otherwise

x a b c x
y a b c y

abc
z i a b c z
w

= = =⎧
⎪ = = =⎪= ⎨ = = =⎪
⎪⎩  
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Then T is a ternary semigroup and { }, , ,x y z w , { }y ,{ }z ,{ }w  are all filters of T.  

Theorem 2.3: Let 1 2,F F  be the two filters of a ternary semigroup T. Then the 

intersection 1 2F F∩ , if it is nonempty is a filter of T. 

Proof:  Let 1 2,F F  be the two filters of T.  Let , , ;a b c T∈  1 2abc F F∈ ∩ .   

1 2abc F F∈ ∩ ⇒ 1abc F∈  and 2, ,a b c F∈ . , , ;a b c T∈ 1abc F∈ ; 1F  is a filter of T 

⇒ 1, ,a b c F∈ . , , ;a b c T∈  2, ,a b c F∈ ; 2F  is a filter of T ⇒ 2, ,a b c F∈ . 1, ,a b c F∈ ; 

2, ,a b c F∈ ⇒ 1 2, ,a b c F F∈ ∩ . , , ;a b c T∈ 1 2abc F F∈ ∩ ⇒ 1 2, ,a b c F F∈ ∩ . Therefore 

1 2F F∩  is a filter of T. 

Theorem 2.4: The nonempty intersection of a family of ternary filters of a ternary 
semigroup T is also a ternary filter. 

Proof: Let F Fα
α∈Δ

= I . Let , , ;a b c T∈  abc ∈ F. Now abc ∈ F ⇒ abc Fα
α∈Δ

∈I  ⇒ 

abc ∈ Fα for each α ∈ Δ. abc ∈ Fα; Fα is a ternary filter of T ⇒ a, b, c ∈ Fα for each α ∈ Δ 

⇒ , ,a b c Fα
α∈Δ

∈I  ⇒ a, b, c ∈ F. Therefore F is a ternary filter of T. 

Note 2.5: In general, the union of two ternary filters is not a ternary filter. 

Example 2.6: As in the example 2.2, T is a ternary semigroups and {y}, {z}, {w}  
are ternary filters, but {y} ∪ {z} ∪ {w} is not a ternary filter of T, because yzw = x is not in 
{y} ∪ {z} ∪ {w}. 

In this paper, the characterization of a ternary filter of T interm of the primeideals is 
given. 

Theorem 2.7:  Let T be a ternary semigroup and F be a nonempty subset of T.  The 
succeeding are equivalent:   

(i) F is a filter of T. 

(ii) T \ F = φ  or  T \ F is a primeideal. 
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Proof:  (i)  ⇒ (ii) Let T \ F = φ. Then T \ F is a primeideal of T. Infact: Since T \ F ≠ φ, 
we take a, b ∈ T; c ∈ T \ F. If abc ∈ F; F is a filter of T, we have a, b, c ∈ F.  It is impossible. 
Thus we have aaa ∈ T \ F, bbb ∈ T \ F. i.e. TT(T \ F) ⊆ T \ F; (T \ F)TT ⊆ T \ F and T (T \ F)T 
⊆ T \ F. Let a, b, c ∈ T and abc ∈ T \ F. If a ∈ F; b ∈ F and c ∈ F then since F is a sub ternary 
semigroup of T, abc ∈ F. It is impossible. Hence we have a ∈ T \ F or b ∈ T \ F or                  c 
∈ T \ F. 

(ii) ⇒ (i)  Let T \ F = φ. Since T = F; F is a filter of T. Suppose that T \ F is a primeideal 
of T.  Then F is a subsemigroup of T.  Infact: a, b, c ∈ F. If abc ∈ T \ F, since T \ F is prime, a 
∈ T \ F or b ∈ T \ F  or ca ∈ T \ F. It is impossible. Thus we have abc ∈ F. Let a, b, c ∈ T; and 

abc ∈ F.  If \a T F∈  then, since T \ F is an ideal of T; \abc T F∈ . It is impossible.  If 
\a T F∈  then, since T \ F is an ideal of T; \abc T F∈ . It is impossible. If \b T F∈ then, 

since T \ F is an ideal of T; \abc T F∈ . It is impossible. If \c T F∈  , similarly \abc T F∈ . 

It is impossible. Thus, we have ;a F∈  b F∈ and c F∈ . ∴  F is a filter of T. 

Now we introduce the notion of a ternary filter of T generated by A. 

Definition 2.8: Let T be a ternary semigroup and A be a nonempty subset of T. The 
smallest filter of T ⊆ A is said to be a ternary filter of T generated by A and is symbolized by              
Ft (A). 

Theorem 2.9:  The ternary filter of a ternary semigroup T generated by a nonempty 
subset A of T is the intersection of all ternary filters of  T ⊆ A. 

Proof:  Let Δ be the set of all ternary filter of T ⊆ A.  Since T itself is a ternary filter of          
T ⊆ A, T ∈ Δ. So Δ ≠ φ. Let F Fα

α

∗

∈Δ

= I . Since A ⊆ F  ∀ F ∈ Δ, A ⊆ F*. So F* ≠ φ.  By 

theorem 2.4, F* is a ternary filter of T.  Let K be a ternary filter of T ⊆ A. Clearly A ⊆ K and K is 
a ternary filter of T. Therefore F* is the smallest ternary filter of T ⊆ A and F* is the ternary filter 
of T generated by A.  

We now introduce the notion of a principal ternary filter of a ternary semigroup. 

Definition 2.10:  A ternary filter F of a ternary semigroup T is known as a principal 
filter provided F is a ternary filter generated by {a} for some a ∈ T. It is symbolized by Ft (a). 

Example 2.11:  As example 2.2; T is a ternary semigroup and Ft (x) = {x}; Ft (y) = {y}; 
Ft (z) = {z} are all the principal ternary filters of the ternary semigroup T. 
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Corollary 2.12: Let T be a ternary semigroup and α ∈ T. Then Ft (a) is the least ternary 
of T ⊆ {a}. 

Proof:  For every α ∈ T, the intersection of all ternary filter containing {a} is again a 
ternary filter and thus the least ternary filter containing {a}.   

  We now introduce the notion of a semilattice congruence on T.  

Let T be a ternary semigroup and I be a primeideal of T.  We define a relation RI on T as 
follows. RI = {(a, b, c) / a, b, c ∈ I or a, b, c ∉ I}. Then RI is a semilattice congruence on T. We 
denote N(a) the filter of T generated by a (α ∈ T).  We symbolized by N the equivalence relation 
on M defined N = {(a, b, c) / N (a) = N (b) = N (c)}. 

Theorem 2.13:  Let T be a ternary semigroup.  The succeeding statement hold true: 

( ){ }/IN R I I T= ∈I  

where is the set of primeideals T.  

Proof: Let (a, b, c) ∈ N and I ∈ I (T). Let (a, b, c) ∉ RI. Then a ∉ I and b, c ∉ I or a ∈ I 
and b, c ∉ I. Let a ∉ I and b, c ∈ I. Then φ ≠ T \ I ⊆ T and a ∉ T \ I. Since TT \ (T \ I) = I,                
TT \ (T \ I) is a primeideal of T.  By the Lemma (T \ I) is a filter of T. Since \a T I∈ , we have 

( ) \N a T I⊆  and thus , \b c T I∈ . It is impossible. Similarly from a I∉  and ,b c I∈  we get 

a contradiction.  Thus we have 
( )

I
I I T

N R
∈

⊆ I . Conversely, let ( , , ) Ia b c R∈  for all ( )I I T∈ . If  

( ), ,a b c N∉ , then ( )a N b∉  or ( )b N b∉  or ( )c N b∉ . Infact, if ( )a N b∈ , ( )b N c∈  and 

( )c N a∈ , then ( ) ( )N a N b⊆ , ( ) ( )N b N c⊆  and ( ) ( )N c N a⊆  and so ( ), ,a b c N∉ . Let 

( )a N b∉ .  Then \ ( )a T N b∈  and thus \ ( )T N b φ≠ .  Since ( )N b  is a filter of T, by the 

lemma, \ ( )T N b  is a primeideal of T. Therefore we have ( )\ ( )T N b I T∈ , \ ( )a T N b∈  and 

, \ ( )b c T N b∉ , i.e ( )\ ( )T N b I T∈  and ( ) ( )\, , T N ba b c R∉  we get a contradiction. Similarly, 

from , ( )b c N a∉ , we have a contradiction.  

CONCLUSION 

This concept is used in filters of chemistry, physical chemistry, electronics, etc.  
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