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ABSTRACT 

In the present investigation, the analytical investigation of nonlinear propagation of intense electromagnetic waves 
through under dense inhomogeneous plasmas, taking into account the relativistic nonlinearity, is presented. The relativistic 
ponderomotive force is shown to have a major effect on nonlinear dynamics of the propagation of intense electromagnetic 
waves. It is seen that a plane wave of uniform intensity becomes unstable and gets filamented in the presence of transverse 
density fluctuation in the plasma. For a linear density profile the amplitude of the filament varies with z as an Airy’s function. 
The growth rate increases with transverse wave vector of the perturbation. The characteristic growth length decreases with 
the size of perturbation and the ratio of expansion velocity to sound velocity. It increases with the angle laser k vector makes 
with the density gradient. 
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INTRODUCTION 

Filamentation instability is an important nonlinear process having implications on energy deposition 
and transport in long pulse laser plasma experiments1-11. It may also influence parametric processes, e.g., 
stimulated Raman scattering and two Plasmon decay2,3. The analytical theories of filamentation instability 
are largely applicable to plasma without a velocity of mass flow, while in laser-plasma experiments one is 
often encountered with expanding plasmas having large flow velocities. Short et al.1 have studied the 
filamentation of a laser beam in expanding plasma where ponderomotive force mechanism prevails.         
Andreev et al.2 reported results of filamentation instability in expanding inhomogeneous plasma. The effects 
of flowing plasma on thermal and ponderomotive light filamentation are examined by Schmitt3.  Ghanshyam 
et al.9 reported the results of filamentation instability of an electromagnetic wave in flowing magnetized 
homogeneous plasma. Sodha et al.10 have studied self-focusing instability in ionospheric plasma with 
thermal conduction. Growth of a ring ripple on a Gaussian electromagnetic beam in a plasma with 
relativistic - ponderomotive nonlinearity is examined by Sodha et al.11 The filamentation instability causes 
perturbations in the intensity profile of an incident laser beam to grow in amplitude, resulting beam into 
intense filaments. Filamentation is produced by perturbations or non-uniformities in the laser beam that 
cause (or are caused by) local changes in the refractive index of a medium. In laser plasmas there are a 
variety of mechanisms that give rise to an intensity-dependent refraction index and produce filaments. The 
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number of electrons that are produced via ionization at a particular point of the beam path strongly depends 
on the prevailing local intensity. As a consequence, any intensity variation across the beam profile would 
give rise to a spatially varying index of refraction with an excess of electrons around the beam axis, which 
would lead to defocusing because of the lensing effect associated with it. In addition the diffraction of the 
beam leads to a defocusing effect independent of density. A counteracting process is the relativistically 
induced self-focusing due to the electron mass increase in high intensity regions and the expulsion of 
electrons from these regions by the ponderomotive force. These factors lead to a positive focusing effect 
which becomes stronger as the laser beam decreases in diameter and becomes more intense. 

In this paper, we present a model calculation of filamentation instability in collisionless relativistic 
plasma having a stationary but non-uniform velocity profile. The nonlinearity arises through the relativistic 
ponderomotive force8, which tends to push the plasma away from the regions of higher wave intensity. The 
process of plasma redistribution depends sensitively on the angle, the ponderomotive force makes with the 
flow velocity and on the ratio of flow velocity to the acoustic speed vb/cs. 

We have studied the filamentation instability of a plane uniform laser beam in inhomogeneous 
plasma and obtained the growth rate. The case of homogeneous plasma has not been considered because one 
can always move to a frame of reference where plasma is stationary and the earlier results of filamentation 
instability theory are applicable. We have also discussed the obtained results.  

Instability anslysis 

Consider non-uniform plasma with density gradient ẑ||no∇ and flow velocity )z(vb along - ẑ  (cf. 

Fig. 1). In the quasi-steady state ( )t/n o ∂∂  = 0, hence novb = constant (cf. equation of continuity). Using no 
(dvb/dz) = - vb (dno/dz), the equation of motion for the plasma fluid can be cast as - 
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Fig. 1: Schematic of electromagnetic wave propagating in a inhomogeneously expanding plasma at an 

angle θo with density gradient ∇no||- ẑ and flow velocity ( ) −||zvb ẑ . ξ axis aligns along                             

Lk and ηaxis is perpendicular to it. Lkk ⊥ and η||k  
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Eq. (2) leads 
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where mi and Ti are the ionic mass and temperature, and Te is the electron temperature. For a linear density 
profile.   
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= , and L is the density scale length. Let an electromagnetic pump wave 
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Lk is in the x-z plane and /
LE is real. It is useful to consider the coordinate system so that ξ axis 

aligns along Lk and η axis is perpendicular to it, in the x-z plane (cf. Fig. 1). Strictly speaking the pump 
wave would undergo refraction as it propagates and ray trajectories would be curved; however, in the 
underdense region such effects are not important, hence ignored here. The pump wave imparts oscillatory 
velocity to the electrons: 

                                                              L

L
L

im
Eev
γω

= ,  …(7) 

where –e and m are electron charge and mass. We perturb this equilibrium by a density perturbation 

                                               n = n/ (x,z) exp ( )[ ]∫−ω− xd.kti , 

which couples with the pump wave to produce two electromagnetic sidebands, 
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where  

ω1,2 = ω + ωL, L2,1 kkk += , 

The linear response of electrons to the sideband waves is - 
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The pump and sideband waves exert a low frequency ponderomotive force7, on the electrons  
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causing ambipolar diffusion of the plasma. The velocity of mass motion v is governed by the linearized 
equation of momentum balance, 
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For kL > 1, Eq. (11) can be solved to obtain - 

                                       

( )[ ]

( )ω
γω

−

∇
+⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ +
∇

=
b

o

s

Li

L

vk

n
nc

mm
EEEei

v
.

.
2
1 2

2
21

2

, …(12) 

where 

( )
i

zie2
s m

TT
c

+
=  

Using Eq. (12) in the linearized equation of continuity,  

                                                       
( ) 0vnvn.

t
n

bo =+∇+
∂
∂  …(13) 

one obtains the density perturbation  
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The nonlinear current density driving the electromagnetic sidebands can be written as  
NL

2,1
L
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where  
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Where 2
pω (0) = 4π o

on e2/m. It is implied here that over a growth length of filamentation instability 

the direction of Lk is not significantly changed (i.e., growth length < L 2
p

2
L

ω
ω

). We chose, Lkk⊥  i.e., η||k , as 

is convenient to a filamentation instability and restrict ourselves to the spatial growth only, i.e., take ω = 0. 
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A similar equation could be obtained for /
2E by replacing /
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For the density, temperature, and flow velocity profiles mentioned above, Eq. (18) takes the form  
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and we have assumed 1// >∂∂ ξL . It may be worthwhile writing Eq. (18) for stationary plasma when the laser 
beam is propagating the direction of density gradient, 
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Eq. (19) is an Airy’s equation43 with two solutions Ai (ξ/) and Bi (ξ/). The second solution /
1E = ABi 

(ξ/) represents a rapid spatial growth, faster than an exponential, for ξ + ξo> 0. The filamentation starts at ξ 
= (ξ = –ξo) ξo. The effective growth length of instability is given by 
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Leff goes as γ ,k–2/3 and 3/2–
Lv   with the relativistic parameter ,wave number of perturbation and the 

electron quiver velocity. It decreases with ( ) ( )0c/0v 2
s

2
b and increases with θo and γ. Fig. 2 displays the 

variation of Leff with θo for different values of ( ) ( )0c/0v 2
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Fig. 2: Variation of effective growth length (Leff) with the angle (θo) laser – k vector makes with the 

density gradient for ( ) ( ) 22
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RESULTS AND DISCUSSION 

A laser beam propagating at an angle to the flow velocity of a moving plasma is unstable to a 
transverse density perturbation. For a linear density profile 2

p
2
p ω=ω (0) (1+z/L), the amplitude of the 

filament varies with z as an Airy’s function. In the far underdense region where the density of the plasma 
low and flow velocity is large, one requires higher power densities to onset a filamentation instability 
superceding diffraction divergence effects. The perturbation starts to grow beyond z ≥ – zo (= – ξo cosθo) at a 
rate faster than the exponential. In this process the power flux of the laser builds up around the density 
minima causing deeper density depressions which in turn attract higher power flux giving rise to the growth 
of the perturbation. After propagating a distance of a few Leff the density depressions may become quite 
deep. At this stage the first order perturbation theory fails. However, one would think that as a consequence 
of enhanced power density in the filaments, the filaments, the filament size would diminish further to 
nonlinear refraction, until diffraction effects become prominent to offset the nonlinear convergence.  

The characteristic growth length of the instability Leff decreases with wave number of perturbation 
and with the velocity of plasma flow. The characteristic growth length Leff increases slowly with the angle θo 

and increases linearly with γ, it depends on vb (0). This may be understood as follows. The filamentation is 
caused by the depletion of the plasma in response to the transverse ponderomotive force. When the plasma 

flow velocity is not at right angle to the k vector of perturbation the plasma, on its way down the density 
gradient, moves from density maxima to minima periodically. The time of flight from one maximum to a 

minimum is ( ),0v
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~
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, whereas the time for plasma redistribution via ambipolar diffusion 
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, significant density depletion occurs when τf > τd, i.e., vb (0) < cs tan θo. With increasing vb 
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(0)/cs (0) the time available for plasma redistribution decreases, hence, density depletion is diminished, 
leading to slower growth of the perturbation.  
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