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Abstract 

We propose a procedure which allows to compute the only acceptable natural exponents of the positive integers X, Y, Z in the 

equation of the Fermat’s Last Theorem. We use the approach similar to the one applied in computing of the expected value and the 

standard deviation of number of successes in Bernoulli trials presented by Kenneth S. Miller. 
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Introduction 

We write the equation from the Fermat’s Last Theorem [1] 

in which X, Y, Z ∈ Z+ are integers greater than zero and N ∈ N is a natural number [2-5]. 

Without loss of generality we rewrite Equation (1) as 

with p, q, r ∈ R and M, L, K ∈ N. Now we set q=1 and r=1 with Y=y+Ly and Z=z+Kz obtaining 

with X=x+Mpx. We have introduced a real number parameter p ∈ R the value of which will be later set to 1. The number M ∈ N 

is a natural number. With such assumptions we must have x ∈ {1/(M+1), 2/(M+1), 3/(M+1), . . .} in order for the variable X to 

assume integer values as required in Equation (1). 

E.g.: If M=1, p=1, x ∈ {1/2, 2/2, 3/2,. . .} then X={1/2+1·1/2, 2/2+1·2/2, 3/2 +1·3/2, . . .} what gives X ∈ {1, 2, 3, . . .};

If M=7, p=1, x ∈ {1/8, 2/8, 3/8, . . .} then X={1/8+7·1/8, 2/8+7·2/8, 3/8 +7·3/8, . . .} what gives X ∈ {1, 2, 3, . . .}; 
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We always arrive at X ∈ {1, 2, 3, . . .} for any natural number M and p=1, i.e., we have ensured that always X ∈ {1, 2, 3, . . .} no 

matter which natural number M we take into account. Similarly, we can ensure that Y and Z are also integers greater than zero 

appropriately choosing natural number parameters L and K and appropriately real numbers q and r in Equation (2). 

Computations 

We take partial derivative of both sides of Equation (3) with respect to p 

We compute the partial derivative of (x + Mpx)N as follows 

We receive a new Equation (6) 

in which we can set the parameter p=1 obtaining 

If we set p=1 in Equation (3) on the other hand, we obtain 

We compare the coefficients at the term with xN in Equations (7) and (8) receiving a constraint equation for N 

and therefrom we obtain the values of exponent N as a function of M 

Quite similarly we can arrive at the formulas for N as a function of L 

and for N as a function of K 

http://www.tsijournals.com/
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Conclusion 

 
We have started with the Equation (1) with assumption that X, Y, Z are positive integers and N is a natural number. We received 

the system of three constraint Equations (10), (11) and (12) for the four unknowns M, L, K and the number N. It means that one 

unknown among the four ones must assume two integer values. We see below that it is the variable N. 

 

For N(M) we have 

 

 
 

Quite similarly we can compute N(L) and N(K). We can state that with our assumption of having N ∈ N we have to reject all 

N(M), N(L) and N(K) solutions which are not natural numbers. Our fourth unknown is N equal to either 1 or 2 what is in perfect 

agreement with the Fermat’s Last Theorem. 
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