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Introduction 

The Gibbs paradox was discovered at the end of the 19th century and has still not been solved [122]. It goes as follows: 

consider an adiabatic box containing ideal gas divided by a very thin impenetrable membrane in two equal parts, A and B 

(Figure 1). The temperature of the gas is T, the volumes of each compartment are V, and there are N atoms in each part. The 

entropies of the halves A and B are S. When one removes the partition, then, according to thermodynamics, the total entropy 

of the box becomes 2S. However, in statistical physics, the entropy of one half is:  
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where k is the Boltzmann constant, U is the internal energy, and X is a constant [6,11]. The entropy of the whole system is 

twice that value. After removing the membrane, the total entropy becomes:  
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Abstract  

Previously, it was found that the internal energy of a system can be described by two functions which depend on the process. In the 

present paper, it is shown that in some processes the system must be considered in the phase space and in other processes it must be 

considered in the momentum subspace. Consequently, the Gibbs paradox in statistical mechanics can be explained. Entropy in 

thermodynamics and statistical mechanics is always extensive. Like internal energy, it is described by two functions, one of which 

depends purely on temperature, whereas the other depends on volume and pressure. 
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Figure 1: Gas boxes A and B used in the consideration of the Gibbs paradox. N, V, and T are the quantity of atoms, the 

volume of each box, and temperature, respectively. 

 

The change in entropy is then: 

     2 2 2 ln 2S S kN  .     (3) 

If one restores the partition, the total entropy again becomes 2S. Thus, entropy is not extensive in statistical physics. No 

increase or decrease in entropy should occur because no change in the state of the gas takes place as the membrane is 

removed or restored. 

 

Theory 

There is a paradox in the theory of ideal gas [2327]. The gas law for monatomic gas is:  

PV = RT ,      (4) 

where P is pressure, V is volume, R is the universal gas constant, and T is temperature. Two variables are necessary to 

determine a thermodynamic state of a gas, such as its internal energy. From kinetic theory and experiments on free 

expansion, the internal energy of ideal gas is [2327]: 

3
( )

2
U T  = RT       (5) 

The paradox is that the energy in this equation depends on only one variable, yet must depend on two. From Eqs. (4) and (5) 

it follows that:  

3
( , )

2
U P V PV .     (6) 

Here the energy depends on two variables. The author of [2325] stated that the characterization of gas using Eq. (5) was a 

wrong approach because the physical quantity internal energy must depend on two variables (not on one). It must also 

depend on volume. He argued that equations of state with two variables must be used instead which show that the internal 

energy of gases, in each situation, is expressed only as a function of volume and pressure. 
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This paradox is also valid for real gases because in a wide range of temperatures and pressures their properties very 

minimally differ from those of ideal gas. For example, at T = 273.15 K and atmospheric pressure, the molar volumes of 

argon, helium, hydrogen, nitrogen, oxygen, and methane deviate at about 0.1 percent from that of ideal gas (22.41410
–3

 m
3
) 

and even less for higher temperatures and lower pressures. For argon, the difference between the experimental and theoretical 

heat capacity is less than 0.1 percent [23-25,28].  

 

This paradox was explained in [27]. In [26], based on the results from [29], it was mathematically proven that the internal 

energy U can be represented as two different functions, U1(T) or U2(P,V); the first depending on temperature only and the 

second depending on pressure and volume only. One can notice that the internal energy function depends on the process 

performed on the system (although both functions are quantitatively equal). For some processes, the internal energy depends 

on the volume and for some it does not. Consider two volumes, V1 and V2 (V2 > V1), each containing a mole of ideal gas. The 

energies of the gas in both volumes are equal and given by Eq. (5). If one introduces a quantity of heat, δQ, into each of the 

volumes, the energies of gas again become equal and defined by Eq. (5), but with a higher temperature. These are correct 

results and there are no mistakes in Eq. (5). If, however, one compresses the volumes, then the process must be defined by 

Eq. (6). There are thus two types of processes. In the first, the volume of the system is changed (but not by compression, 

either positive or negative) and, in the second, the system is compressed or expanded by mechanical work. Both types are 

characterized by different internal energy functions. There is no universal internal energy function. Quantitatively both 

internal energy functions are identical, that is, U(T) given by Eq. (5) is identically equal to U(P,V) given by Eq. (6). 

 

According to the rigorous mathematical definition of function [29], internal energy must be constituted of two different 

functions which depend on different variables [26]. Let us cite [26] rewriting internal energy equations with one independent 

variable, T, as a function of additional variables is not a trivial mathematical manipulation. Doing so reveals that the rigorous 

mathematical definition of the word ‘function’ necessitates U being dependent on other variables as well. Why is it so 

important to adhere to this mathematical definition? Because it is a building block in the foundation upon which calculus, an 

indispensable tool in thermodynamics, is based. 

 

 One can explain the Gibbs paradox in statistical mechanics in the same way. In Helmholtz free energy: 

     F U TS  ,      (7) 

internal energy, U, depends on the process. The entropy can be obtained from Eq. (7) by the equation: 
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and therefore there are two different entropy functions which depend on the process. 

 

Let us perform a simplified derivation of Helmholtz free energy for monatomic ideal gas [30]. It can be obtained through the 

partition function, Z: 

     lnF kT Z  ,      (9) 

where Z is: 
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and where d is an element of the phase space. Here, the integration is performed over the whole phase space. The energy, U, 

equals the sum of the kinetic energies of the atoms: 
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Here, pi is the momentum of the i-th atom. Introducing Eq. (11) into Eq. (10), one obtains a 6N-dimensional integral:  
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Some authors explain the Gibbs paradox by introducing the factor 1/N! into the right-hand side of Eq. (12), but this is to 

apply a quantum approach to what is a classical problem. Many authors have recognized that quantum theory has no bearing 

on the matter [2,7,8,14,1822]. 

 This integral equals:  
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Here dp1 and dr1 are the elements of the momentum space and position space, respectively, of the first particle. Therefore, 

from Eq. (9): 
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Now, taking the derivative of this free energy with respect to temperature, Eq. (8), one obtains the entropy of ideal gas: 
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In the Gibbs paradox, the volume of the system changes not by compression or straining. Therefore, the internal energy does 

not depend on the volume. This is possible only when the system is described by the momentum space. Performing the 

derivation of Helmholtz energy and entropy of ideal gas in the momentum space, one obtains:  
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and 

     
3/23

ln ln 2π e
2

S kN T mk
 

  
 

.    (17) 

One can see that this entropy is additive.  

 

Discussion 

The internal energy can be obtained through the partition function: 
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It is interesting to note that the energy of ideal gas obtained introducing Eq. (13) into the above equation coincides with that 

in Eq. (5), that is, it does not depend on the volume. The change in the entropy of the process described by Eq. (5) does not 

depend on the volume either: 

     
d

d
U

S
T

 .      (19) 

The expression for entropy, Eq. (17), being introduced into Eq. (19), gives the correct result but Eq. (15) produces an 

incorrect result. Eq. (15), though, correctly characterizes the process with volume change: 

     
d d
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  .     (20) 

 

Conclusions 

According to the mathematical definition of the word function, the internal energy function of a system can be of two 

different types. The first one depends on a single variable: temperature; the second depends on two variables: pressure and 

volume. The internal energy function depends on the process performed on the system (nevertheless, both types of the 

function are quantitatively identical). The energy function which depends only on temperature is used in processes where the 

volume of the system is changed not by compression or stretching; and the energy function which depends on the volume and 

pressure is used in processes where the volume of the system is changed by positive or negative compression. In the Gibbs 

paradox, the former case is used and the energy function of the first type must be applied. It was shown that in the former 

case, the system must be described by the momentum space. In the latter case, the system must be described by the traditional 

phase space. This explains the Gibbs paradox in statistical mechanics. The entropy is always extensive. It also can be 

described by two different functions which depend on the process performed on the system. The first function depends only 

on temperature, and the second depends on volume as well. 
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