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INTRODUCTION

In polymer crystallization field, the segregation is a
well known phenomenon associated with crystalliza-
tion of a crystallizable component from a system which
contains also, impurities, or non-crystallizable species.
When crystallization occurs below the melting point of
the crystalline component, the process involves two
types of material transport, namely, diffusion of the crys-
tallizable component toward the moving crystal growth
front and a simultaneous rejection of the non-
crysallizable species. The segregated species accumu-
late at the growth front during crystallization and cause
a depression of both the equilibrium melting tempera-
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The problem of segregation for non-crystallizable species, as a mass trans-
fer problem during isothermal crystallization, is considered with a suitable
boundary condition for the semicrystalline polymeric materials. The veloc-
ity of the growth front of an isolated spherulite is considered to be de-
pressed as a result of segregation during crystallization and it is assumed to
be inversely proportional to the square root of time. A self-similar solution
has been found and shows that the species concentration, at the growth
front, increases with increasing the growth-to-diffusion ratio but it is inde-
pendent on the time of crystallization. The segregated species concentra-
tion in the diffusion layer, near the growth front, increases with crystalliza-
tion time, this is considered to be the reason of depressing the growth
velocity with time.  2011 Trade Science Inc. - INDIA

ture and the overall crystallization velocity[1,2]. Also, the
properties of the final solid of the polymer product would
be influenced by the concentration of the non-crystalli-
zable species in the spherulitic boundaries[3]. It is useful
then is to find out the concentration of segregated spe-
cies both on the melt near and at the moving growth
front during the time of crystallization.

The diffusion problem was solved generally and ap-
plied to phase growth controlled by both (either) heat
and (or) solute[4], but this sort of wok has rarely been
extended to polymer field, only numerical solutions were
applied on the binary polymer blends[5,6]. Analytically,
the problem was treated only for non-polymeric mate-
rials. In a previous work[7], by a moving plane front of
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phase transition, an exact solution was found for a con-
stant growth rate for a problem of gas segregation dur-
ing solidification of liquid. In a more recent work[8], the
gas segregation problem has been treated mathemati-
cally by using both of a plane and a spherical growth
front for both constant growth and a rate inversely pro-
portional to the square root of time.

In this paper, the diffusion equation for moving
spherical solid/melt interface, with initial and suitable
boundary conditions for semicrystalline spherulitic
growth, has been solved exactly. The isothermal crys-
tallization is considered for a polymeric system of a crys-
tallizable component contains an initial concentration of
non-crystallizable species. The problem is solved here
for a spherical moving growth front with a rate inversely
proportional to the square root of time. This solution
can be applied on spherulitic crystallization of poly-
mers[9,10] of similar radial growth rate, as a second stage
succeeds a first stage of constant growth rate[10]. The
concentration of the non-crystallizable species at the
growth front is found to be dependent on the growth-
to-diffusion ratio and independent on time of crystalli-
zation, but the concentration in the diffusion layer, near
the growth front, increases with crystallization time.

THEORETICAL ANALYSIS

During isothermal crystallization, consider a certain
polymer spherulite of radius R at a certain crystalliza-
tion time, t, as presented in Figure 1. The spherical
growth front, or solid/melt interface, is moving through
the melt with a velocity, V. The melt has an initial non-
crystallizable species concentration C

o
. As a result of

segregation during the crystallization, the non-crystalli-
zable species concentration, in the melt, is then changed
and becomes, C(r,t), which can be described by the
following equation:
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The initial and boundary conditions can be assumed as:
0tforCC o 
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The factor  is inserted in the boundary condition
because the crystallization front contains both of crys-
talline phase in the form of dominant lamellae and the
interlamellar spacing of amorphous phase. It is assumed
that crystalline lamellae are free from any non-crystalli-
zable molecules. The interlamellar regions, at the growth
front, have non-crysallizable species of concentration,
C, the same as that in the melt at the growth front. This
assumption is suitable for the semicrystalline polymeric
material. We have to distinguish between the crystallin-
ity at the growth front and the overall crystallinity after
quenching. The later is quite higher because it includes,
in addition to the first, the crystallization behind the
growth front, which in the form of thickening and sub-
sidiary lamellae, and crystallization during quenching.
Simply, the factor  = l

c/
 l

t
 where, l

c
 is the average

dominant lamellar thickness and l
t
 is average distance

between two neighbored dominant lamellae, both must
be considered at the growth front.

Introducing the dimensionless concentration

  oo CCCC   and we can use the new coordinate
system, Rrr   (Figure 1). The diffusion equation 1
can be rewritten as;
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and the initial and boundary conditions are then:
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Where D is the diffusion rate of the non-crystallizable
segregated molecules through the melt and  is a factor
represents the volume crystallinity at the growth front.

Figure 1 : Schematic diagram of the spherical growth front.
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 rfor0C
This problem has a self-similar solution, as the growth
rate is inversely proportional to the square rote of time

t/KV  . This solution can be obtained by introduc-

ing the variable tr . The diffusion equation can be
reduced to the ordinary differential equation:
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The boundary conditions will be
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Using the variable k
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stituting in equation 5 and rearranging, one can write
the differential equation in the following form;
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and the initial and the boundary conditions are:
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Integrating and substituting by the boundary condition,
we can get the solution as
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The function )(f   is given as
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From equation 9, if we put 0  or k , the species

concentration, fC  at the growth front is in the form
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and the function )k(f  is given as:
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The graphs of figure 3 show the species concentra-
tion in the melt at and near the growth front at different
crystallization times. Here k is constant, the case of iso-
thermal crystallization. The situation here according to
equation 11, the species concentration at the growth
front, fC  is instantly established and remains constant
during the whole process. In fact our mathematical so-
lution here satisfied a second stage of crystallization at
which the growth velocity is inversely proportional to

RESULTS AND DISCUSSION

Figure 2 shows the species concentration in the melt
at and near the growth front with different values of k.
The parameter k can be considered as a suitable indi-
cation of growth-to-diffusion ratio, where, D/Kk  .
For higher values of k, i.e. at relatively higher super-
cooling or relatively lower crystallization temperature,
within certain limits of temperature range[1], a more in-
creasing in species concentration is expected at the
growth front.

Figure 2 : The dimensionless concentration C  of the non-

crystallizable species versus D/  at different three values

of the parameter k, 1.0 .
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It is also useful to find out the diffusion layer thick-
ness   which grows through the melt as the solid/melt
interface grows. The diffusion layer thickness   can be

defined from the relation: e/1C/),t(C f  . Hence, us-
ing the equations 9-12 one can find;

Dt (13)

and the factor á can be determined from the following

relation:
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At large values of k, using asymptotic representation of
the additional integral of errors, near the growth front
we obtain:
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Equation 14 gives an approximate relation which gives
the general behavior of the species diffusion, in consis-
tent with the mostly known and interested work pre-
sented in the phenomenological theory of spherulitic
crystallization[11].

This work is an attempt to formulate the segrega-
tion problem mathematically in polymer field. Although
it does not give a complete view for the whole process
but it describes and formulates a second stage of growth
at which the interface velocity is inversely proportional
to the square root of time. In fact, there are three mutu-
ally-interactive parameters, the species concentration
at the growth front, the equilibrium melting temperature
and the growth velocity. The constant growth rate can
be obtained, for homopolymer, in isothermal crystalli-
zation according to Lauritzen-Hoffman theory[12]. This
can not be observed for a system including sensible
content of non-crystallizable species at segregation con-
ditions. In these, the more expected is that the equilib-
rium melting point and the growth rate are depressed
as a result of segregation[1,2]. Also, it is not expected, in
this system, to find a constant species concentration
unless steady-state conditions have been reached near
the end of crystallization time at which a nearly constant
growth rate can be observed[13]. A more complete view,
as it can be suggested in future work, would cover the
whole crystallization process smoothly and gives more
proper interpretations on the relation between the three
mutually-interactive parameters.

CONCLUSIONS

The problem of segregation for non-crystallizable
species, as a mass transfer problem during isothermal
crystallization, is considered with a suitable boundary
condition for the semicrystalline polymeric materials. The
growth velocity is taken as to be inversely proportional

the square root of time. It is assumed that this stage
follows a first stage, according to the previous
works[9,10], at which the growth rate is constant and the
species concentration increases to a specific value which
may be near to that represented in figure 3. However,
the concentration near the growth front, within a certain
diffusion layer, increases with time (Figure 3). This may
be depresses the equilibrium melting temperature[1,2] near
the growth front, decreases the supercooling which can
be considered the reason of depressing the crystalliza-
tion rate from linearity at the first stage to inversely pro-
portional to square root of time at the second stage.

Figure 3 : The dimensionless concentration C  of the non-

crystallizable species versus D/r  at three different times,

1k  , 1.0 .
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to the square root of time, the case at which a self-
similar solution has been found. The species concen-
tration, at the growth front, is found to be dependent on
the growth-to-diffusion ratio and independent on time
of crystallization. But the concentration in the diffusion
layer, near the growth front, increases with the crystal-
lization time. This increasing in concentration near the
growth front can be considered the reason of depress-
ing the growth velocity with time.
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