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ABSTRACT

Protein-protein interaction is essential to cellular functions. Knowing the
protein-protein interaction often provides useful clues for finding its
biological function and interaction process with other molecules in a
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biological system. In this paper, we describe a simple, novel approach to
improve the accuracy of predicting protein-protein interaction. Here,
dimensionality reduction algorithm is introduced to predict the protein-
proteininteraction. Our jackknifetest resultsindicatethat it isvery promising
to use the dimensionality reduction approaches to cope with complicated
problems in biological systems, such as predicting the protein-protein

interaction. © 2013 Trade Sciencelnc. - INDIA

INTRODUCTION

Protein—proteininteractions (PPI) promisetore-
veal many aspects of the complex regulatory network
underlying cellular function. PPl network isessentid to
understand the fundamenta processesgoverning cell
biology. Recently, studying PPI networks becomes
possi bledueto advancesin experimenta highthrough-
put genomicsand proteomicstechnol ogies. A signifi-
cant amount of experimental PPl network datafor sev-
eral organisms has aready been generated and stored
in various PPI interaction databases¥. However, a
maj ority of these PPl databasessuchasINTACT (http:/
Mww.ebi.ac.uk/intact), BIND (http://binddb.org), DIP
(http://dip.doembi.ucla.edu) and MINT (http://
mint.bio.uniroma2.it/mint) havebeen curated manualy
by domain expertsand arefar from comprehensive.

M achinelearning has been shown to havethe potentia
to accel erate the mining and curation process of PP
knowledge.

Research in biology and biochemistry haslead to
thediscovery of various protei nswith unknown func-
tion that seemto play animportant rolein biological
processes. Theaccurate annotation of theseproteinsis
often time consuming but can beaided by knowing the
preciselocation of the protein’sbinding stesand/or its
interacting partners. Sinceamost all proteinscarry out
their diversefunctionsby specific protein-proteininter-
actions, theidentification of theseinteracting partnersis
awedth of knowledgetowards understanding the bio-
chemistry of aparticular protein.

Currently thehigh throughput approach toidentify-
ing protein-proteininteraction (PPl) isthe yeast two-
hybrid experimentd®4. Despiteof itsbeng highthrough-


mailto:zjxywt@163.com

BTAIJ, 8(1) 2013

Tong Wang et al.

115

————, FyurL PAPER

put, atypical proteomic project cantake over ayear to
completeand often with noisy or anbiguousdata. This
has motivated bioinformaticsresearch to develop com-
putational methodsfor predicting protein-proteininter-
action, which can then be quickly tested by
colmmunopreci pitation or other rel ated experiments.
In>8, methodsweredevd oped for predictingthebinding
stesexploiting characteristicsof the surface residues,
whereas somemethodsfocus on deriving sequencesg-
natures from PPl and usethese signaturesfor predict-
ing PPI"8, In awork by Ben-Hur and Noble, kernel
methodswere developed to predict protein-proteinin-
teraction using various sources of data.

Protein-proteininteractionsarecentra to al aspects
of cdlular function including for examplegeneregula
tion, immunologica recognitionand protein synthesi 9.
Hence, identification of binding sitesbetweentwo in-
teracting proteinsisone of basic problemsin there-
search of protein functions. Knowledge of the three-
dimensiond (3D) structure of the proteincomplex pro-
videsmuch vauableinformation ontheprotein binding
dte.

Severd experimenta methodssuch asX-ray crys-
tallography and NMR can be used to obtain suchin-
formation. However, they can not meet therequirements
of proteomics-generated i nteraction dataaccording to
their current capability for providing such information.
Therefore, computational methodsarerequired to as-
sist theidentification of potential binding Sitesin pro-
teins.

So far anumber of computational methods™™ have
been explored for the prediction of interaction sitesin
proteins based on the sequenceinformation, 3D struc-
tureinformation or acombination of 3D structureand
sequenceinformation. Classification methods such as
scoring functiong®, neural network™3, support vector
machine (SVM)™ and random forest!*¥ have been
successful appliedfor predicting binding Sites.

In The present study wasinitiated in an attempt to
proposeacompletdy different approach, the compre-
hensive comparativestudy of different DR methodsin
termsof their ability to predict protein-proteininterac-
tion. Moreover, protein sequences are represented by
PSSM (Position-Specific Score Matrix)™*>8 whichin-
corporatetheevolutioninformation. Theresult thusob-
tained isquite encouraging, indicating that the above

gpproach can dso beeffectively used to ded with other
complicated biologicd systems.

METHODS

Dataset

Theexperimental datain thisstudy werederived
from the dataset used by Liu et .. Thisdataset con-
tains 504 protein hetero chains. In addition, we also
adopted their definition of surface residuesand inter-
faceresidues. According to this definition, the dataset
contains surfaceresidues, about 35.05% of which are
interfaceresdues.

Position-specific scoring matrix

Inthisstudy, apowerful sequenceencoding scheme
PSSM isintroduced. Itisuseful to summarizethemain
definitionsassociated with thismethod here.

A proteinsequencecontaining N aminoacidscan
be represented by a420-D (Dimensional) vector, i.e.,
Poww =|A, A, ~ A, S s, - s.] (1)
wherethefirst 20 components arethe average scores
of every columnin Py, matriX. P.g,, isshownas
below:

A 1->1 A 1-»2 A 120
A 2-1 22 A 2—20

Posau =| - : : : )
A A A

N—-1 N—2 N—20

where A, ; representsthe scoreof amino acid residue
at the j -th position of the protein sequencebeing sub-
ditutedtotheaminoacidtype j (1< j < 20) duringevo-
lution process. Here, the numerical codesy, 2,..., 20

represent the 20 native amino acid types according to
the alphabetical order of their single-residue codes.

N denotesthelength of theprotein. Inthisstudy, P,
isgenerated by carrying out PSI-BLAST. Thisprocess
will search the Swiss-Prot database through threeit-
erationsfor multiplesequencedignment against thepro-

teinp. Every element in P.,, wasscaled by astan-
dardization  procedure. The compo-
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nentss,, S, ..., S,y in (1) areobtained by summing

upadl rowsinthe P, , each of which correspondsto
thesameaminoacidintheprimary sequence p . It means
for each columnin P,y , thereare 20 valuesinstead
of N. Hence, we will have a vector of

dimenson20x 20fora P.g, -

PCA

Principa ComponentsAnaysis (PCA) constructs
alow-dimensional representation of the datathat de-
scribesas much of thevarianceinthedataaspossible.
Thisisdoneby finding alinear basisof reduced dimen-
sondity for thedata, inwhichtheamount of variancein
the dataismaximal*9.

Inmathematicd terms, PCA attemptstofindalin-

ear mapping \ that maximizes M ' cov, . M ,where

cov, _ isthecovariancematrix of thezeromean data

X . It can be shown that linear mappingisformed by

the d principal eigenvectorsof the covariance matrix
of the zero-mean data. Hence, PCA solves the
egenproblem

X=X
The eigenproblem is solved for the d principal
eigenvaues ;1 . Thelow-dimensional datarepresenta
tions y, of thedatapoints x arecomputed by mapping
themontothelinear basis) ,i.e,
Y =(X-X)M @
LDA

Linear Discriminant Analysis(LDA) attemptsto
maximizethelinear separability between datapointsbe-
longing to different classes. In contrast to most other
dimensionality reduction techniques, LDA isasuper-
vised technique®. LDA findsalinear mapping  that
maximizesthelinear class separability inthelow-di-
mensional representation of thedata. Thecriteriathat
areusedtoformulatelinear classseparability in LDA

arethewithin-classscatter S,, and the between-class
scatter S;, whicharedefined as:

BioTechnology —

Sv= Z P COV. )
S =C0V-§y ©)
where p, istheclassprior of classlabel c,cov . .. is

the covariancematrix of the zero mean datapoints x

assignedtoclass ce C,and cov, _, isthecovariance
matrix of thezero mean data x . LDA optimizesthe

ratio between thewithin-classscatter S,, andthebe-

tween-classscatter S; inthelow-dimensional repre-

sentation of thedata, by finding alinear mapping \p that
maximizestheso-caled Fisher criterion

MTs,m|

‘M T SN M ‘ )
Thismaximization can be performed by computing

the d principal eigenvectorsof S,'S, . Thelow-di-

mens ona datarepresentation y of thedatgpointsin x
can be computed by mapping them onto thelinear ba-

SsM,ie, Y=(X-X)M.
Kernd PCA

Kernel PCA (KPCA) isthereformulation of tradi-
tional linear PCA in ahigh-dimensional spacethat is
constructed using akernel function*¥. Kernel PCA
computestheprincipal elgenvectorsof thekernel ma
trix, rather than those of the covariance matrix.

Thereformulation of traditiona PCA inkernd space
isgraightforward, snceakerne matrix issmilar tothe
inproduct of the datapointsin the high-dimensional
spacethat isconstructed using thekernd function. The
application of PCA in kernel space providesKernel
PCA theproperty of constructing nonlinear mappings.

Kernd PCA computesthekernel matrix K of the

¢p(M) =

datapoints x . Theentriesinthekernel matrix are de-
fined by

k; = k(x,X,) (8)
where k isakerne function. Subsequently, thekernel

matrix K iscentered using thefollowing modification
of theentries
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kij = kij _%Izkil _%Z kjl +izz klm 9)

nlm

The centering operation correspondsto subtract-
ingthemean of thefeaturesintraditional PCA. It makes
surethat thefeaturesinthehigh-dimensiond spacede-
fined by thekernd function arezeromean. Subsequently,

theprincipal d eigenvectors v, of the centered kernel
matrix are computed. It can be shown that the eigen-
vectorsof the covariance matrix o, arescaled versons

of theeigenvectorsof thekernel matrix v

1
o =——V

i \/Z i
In order to obtain thelow-dimensiona datarepre-
sentation, thedatais projected onto the eigenvectors
of the covariancematrix «; . Theresult of the projec-
tionisgivenby

(10)

Kerne LDA

By introducing akernd functionwhich corresponds
to thenon-linear mapping, dl thecomputation can con-
veniently be carried out in theinput space. The prob-
lem can befinally solved asan eigen-decomposition
problemlike PCA, LDA and KPCA. Fromthetheory
of reproducing kernel we know that any
solutionw e F mustlieinthespan of dl trainingsamples
inE . Let ¢ beanonlinear mapping to some feature
spaceE . E weneed to maximize?®
w' Siw
w'S,w

J(w) = (12)

where S is between-class scatter matrix and S, is

within-class scatter matrix. Thereforewecanfind an
expansionfor wof theform

|
w= Y ad(x)
i=1
Using the expansion Eq.13 and the definition of

(13)

m’ wewrite®

w'ny :liiajk(xj,xb

Ii j=1k=1

=a'M,

. (14)

1 i
Wherewe defined (M:); =12, k(X %) and re-

placed the dot products by thekernel function. Now
consider thenumerator of Eq.12. Beusing the defini-

tionof ¢ andEq.14it can berewrittenas
w Sw=a"Ma

where M = (M, —M,)(M, - M,)". Considering the

(15)

denominator, using Eq.13, thedefinition of ny anda
smilar transformation asin Eqg.15 wefind:

W S,w=a'Na (16)

Where we set N :ZZ;=1,2K1(| -1 )K . K;is a
I xI; matrix with (K ),,,, := k(x,,x}) (thisisthekernel
matrix for class j ), | istheidentity and lj thematrix

withall entries/I .

Combining Eg.15and Eq.16 wecanfind linear dis-
criminantin F by maximizing
a'Ma
a'Na

Thisproblem can besolved (anal ogoudy totheal -
gorithmintheinput space) by finding theleading eigen-
vector of N~ - Wewill call thisgpproach (nonlinear)

Kernel LDA. The projection of anew pattern x onto
w isgiven by

(W-¢(x)) = Zaik()glx)

Thus, using Eq.18 we can map aprotein sample
into some high-dimensional feature space asdesired.

J(a) = 17)

(18)

EXPERIMENTAL RESULTS

Theperformanceof four different DR methodsfrom
the perspective of identifying protein-protein interac-
tion was compared. The accuracy of thelow dimen-
siond representationsof the high dimensiona dataob-
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tained by the different DR methodswas eva uated via
KNN2-22 ggorithm. Accordingly, thejackknifetest has
beenincreasingly and widdy adopted by investigatord®
%l to test the power of variouspredictors. Therefore, in
this study, jackknifetest was performed with the cur-
rent approach in predicting the protein-proteininterac-
tion.

AsshowninTablel, theoveral jackknife success
rates obtained by DR methodsinidentifying the pro-
tein-proteininteraction are higher than theonesobtained
without usinglinear DR methods. Meantime, itindicates
that supervised DR methods (LDA and KLDA) out-
perform unsupervised DR methods (PCA and KPCA)
and the nonlinear DR methods (KPCA and KLDA)
outperform linear DR methods (PCA and LDA). In
summary, base on the observation, it isconcluded that
theoverall jackknife successratewith KLDA isthe
highest relativeto the other DR methods.

TABLE 1 : Success rates in identifying protein-protein
interaction by thejackknifetest

Sequenceencoding T est method (%)

Method
schemes

Jackknife
K-NN(K=1) PSSM 81.80
PCA& K-NN(K=1) PSSM 83.05
KPCA& K-NN(K=1) PSSM 84.53
LDA& K-NN(K=1) PSSM 88.70
KLDA& K-NN(K=1) PSSM 92.38
CONCLUSIONS

Inthispaper, we compared the performance of four
different DR methodsfrom the perspectiveof discrimi-
nating protein-protein interaction. Theresultsobtained
are encouraging, which are higher than the ones ob-
tained without DR methods. The application of DR
approach to the prediction of protein-protein interac-
tionisjust an exampleto demondrateitsadvantages. It
has not escaped our notice that the DR approach can
a so be used to deal with many other complicated bio-
logica systems.
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