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ABSTRACT

Inthisresearch an expert model based on artificial neural network was used
to estimate temperature distribution along an annul ar fixed bed reactor which
has been used in the Oxidative Coupling of Methane (OCM) Process. Ex-
periments was done by using the Li/MgO Catalyst with different percent-
age of Li content in range of 1.6-6.6 %. In order to find the best efficiency
estimator of sieve tray, different training schemes for the back-propagation
learning algorithm, such as; Scaled Conjugate Gradient (SCG), L evenberg-
Marquardt (LM), Gradient Descent with Momentum (GDM), variablelearn-
ing rate BP(GDA) and Resilient BP(RP) methods were examined. Finally
among those trained networks, the LM algorithm with ten neurons in the
hidden layer shows the best suitable algorithm with the minimum average
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absoluterelativeerror 0.005226.

INTRODUCTION

Duetoimportance of natura gasproductioninthe
world, thevariousmethodsand processes of have been
established. So widespread research about the me-
chanica processesinthe natural gasconversion such
as Compressed Natural Gas (CNG), Natural GasLig-
uefaction (NGL) and conversionto hydrocarbon prod-
uctsi.e. the Oxidative Coupling of Methane (OCM)
process have been done. The main product of the
OCM processis Ethylenewhich hasahigher added-
value compared to the other productswith the highest
volumetric consumption demand in the market among
the other petrochemica products. Ethyleneisdirectly

© 2011 Trade Sciencelnc. - INDIA

or indirectly feed for most petrochemical units. Ethyl-
eneoccupiesthehighest rank among thermoplagtic poly-
mersin globa production. The OCM processisanew
and devel oped method that directly convertsasignifi-
cant amount of thenatural gasto C,*. Themethod uses
aspecific catalyst inthe conversion process?.

The Methane and oxygen are the main reactants
that arefed along with anitrogen carrier to an annular
fixed bed reactor in the OCM process. Thefurnace
temperatureisfixed at 775°C to maintain thereaction
temperaturein therange of 750°C -850°C. Thisrage
of temperature has been obtai ned using an annular re-
actor with passing cooled air from the outer and inner
layers. ANN as a new method and good predictor
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has been recently applied inmany fieldsespecially in
chemical engineering processes?. ANN isamodel
that attemptsto mimic smplebiological learning pro-
cesses and simulate specific functions of human ner-
vous system®. Thismodel creates aconnection be-
tween input and output variables and keepsthe un-
derlying complexity of the processinsidethe system.
Theability tolearn the behavior of the datagenerated
by asystemisthe neural network’sversatility and privi-
lege. Fast response, simplicity, and capacity to learn
are the advantages of ANN compared to classical
methods. Inthiswork, an expert model based onANN
by using some experimental resultsof OCM process
is proposed to predict the temperature along the an-
nular fixed bed reactor.

ARTIFICIAL NEURAL NETWORK

Inorder tofind relationship between theinput and
output dataderived from experimental work, amore
powerful method than the traditional methodsare nec-
essary. ANN isan efficient algorithm to approximate
any functionwithfinitenumber of discontinuitiesby learn-
ing therel ati onships between input and output vectorg.
These algorithmscan learn from the experiments, and
also arefault tolerant in the sensethat they areableto
handle noisy and incomplete data. TheANNsareable
to deal with non-linear problems, and oncetrained can
perform predictionand generdizationrgpidly. They have
been used to solve complex problemsin control, opti-
mization, pattern recognition, and classification™. ANNs
arebiological inspirationsbased onthevariousbrain
functiondity characterigtics. They arecompaosed of many
smpleelementscalled neuronsthat areinterconnected
by linksand act like axonsto determine an empirical
rel ationship between theinputsand outputsof agiven
system. Multiplelayersarrangement of atypica inter-
connected neurd network isshowninFigure 1. It con-
sistsof aninput layer, an output layer and one hidden
layer with different roles. Each connectinglinehasan
associaed weight. AnANN istrained by adjusting these
Input wei ghts (connection weights), so that the cal cu-
lated outputs may be approximated by thedesired val-
ues. The output from agiven neuroniscalcul ated by
applying atransfer function to awe ghted summation of
itsinput to agive output, which can serveasinput to
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other neurons, asfollowdg®:

Nk—1

a; =F( Zwijkai(k—l) +B) @
i1

Where 3, isneuron j’soutput from k’slayer B isthe
biasweight for neuronj inlayer k. Theneuronsinthe
hiddenlayer perform two tasks: summing theweighted
inputs connected to them and passing theresult through
anon linear activation function to the output or adja-
cent neurons of the corresponding hidden layer.
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Figurel: Schematicof typical multi-layer neural network
mode

Themodel fitting parametersw;, arethe connec-
tionweights. Thenonlineer activation transfer functions
F, may havemany different formg™3.

Thetraining processrequiresaproper set of data
i.e.input (I.) and target output (t). During training the
weights and biases of the network areiteratively ad-
justed to minimizethe network error function®. The
typica error function that isusedistheAverage of Ab-
solute Relative Errors (AARE) EQ. 2.

1 t,—a,
AARE_N;ABS( : ) )

There are many different types of neural net-
works, differing by their network topology and/or
learning algorithm. In this paper the Back Propaga-
tion (BP) learning algorithm, whichisone of the most
commonly used algorithmsis applied to predict the
sevetray efficiency. BPisamultilayer feed-forward
network with hidden layers between theinput and
output®®. The simplest implementation of BP learn-
ing isthe network weights and biases updatesin the
direction of the negative gradient that the performance
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function decreases most rapidly. Aniteration of this
algorithm can bewritten asfollows®:

X1 = %™ |kgk (3)
Therearevarious BP a gorithms such as Scaled Con-
jugate Gradient (SCG), Levenberg-Marquardt (LM),
Gradient Descent with Momentum (GDM), variable
learningrate BP (GDA) and Resilient BP(RP). LM is
thefastest training algorithm for networks of moderate
sizeandit hasthememory reduction featureto beused
when thetraining set islarge. One of themost impor-
tant generd purpose BPtraining agorithmsis SCGE7.

Theneura netslearn to recognize the patterns of
the datasets during the training process. Neural nets
teach themselvesthe patterns of the data set letting
theanalyst to perform moreinteresting flexiblework
inachanging environment!. Although neura network
may take sometimeto learn asudden drastic change,
but it isexcellent to adapt constantly changing infor-
mation. However the programmed systems are con-
strained by the designed situation and they are not
valid otherwise. Theneurd networkscan easily model
dataeven with very complex interactions, which are
too difficult to model with traditional methodslike
nonlinear regressiong®?. Performance of neural net-
worksisat least asgood asclassical statistica mod-
eling, and even better in most cases®. Theneural net-
works built models are more reflective of the data
structureand are significantly faster.

EXPERIMENTAL SETUP

Thegenera schematic diagram of the OCM pro-
cess componentsare shown inthe Figure 2. A mini-
mum of 30 gr of theLi/MgO catalyst wasusedin each
step of the catalyst testing procedureinthereactor. The
used catal ysts have been fabricated with different Li
content of 1.6, 2.5, 3.3 and 6.6 %. The procedure of
catal yst fabri cation hasbeen mentionedin our previous
work™, Anannular reactor with passing cooled air from
theouter andinner layerswasused for performing OCM
process reactions. Four thermometerswere put at in-
let, outlet of reactor and height of 5cmand 20cmaong
thereactor for temperatures measuring. Experimental
datasetswere collected for ANN training. TABLE 1
liststherangeof experimentd datathat areused to pre-
dict thetemperature dong thereactor.
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TABLE 1: Minimum and maximum rageof experimental data.

Minimum Maximum
Temperature (C) 43.35024 342.3387
%Li content 16 6.6
Height (cm) 0 40
Cold .;\ir ,In Compressor| ]
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Figure2: OCM processcatalyst test components

MODEL DEVELOPMENT

TheBPmethodwith SCG LM, RPand GDA learn-
ing agorithmshasbeen usedinfeed forward, single
hidden layer network (such asfigure 1). Input layer
neurons have no transfer functions. InputsaretheLi
content percentage and height whileoutput isthetem-
perature. The computer program in MATLAB was
developed. Two thirds of dataset was used in ANN
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Figure3: Deter mining the optimum number of hidden layer

neurons.
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training and theremaining datawereemployedto evau-
atethe best obtained network generalization capacity.
The number of the hidden layer neuronsis systemati-
cally varied to obtain agood estimate of thetrained
data. Theselection criterionistheerror function. The
AAREsof variousnumber of hidden layer neuronsare
showninFigure3. According to thefiguretheoptimum
number of hidden layer neuronsisten.

Similarly theAARE of varioustraining dgorithms
werecaculated andlistedin TABLE 2for the obtained
ten hidden layer neurons. AsTABLE 2 showsthe LM
dgorithm hastheminimumAARE.

TABLE 2: AARE comparison between different algorithms
totrain ANN

algorithm AARE of network training
trainlm 0.005226
trainscg 0.030817
trainrp 0.081500
traingda 0.112004
traingdm 0.132157

RESULTSAND DISCUSSION

Theresultsshow that theANN predictstempera-
tureaongthereactor very closeto the experimentally
measurements. Figure4 showsthe scatter diagramsthat
comparethe experimental dataversusthe computed
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Figure4: Evaluation of ANN performance; ascatter plot of

typically measur ed experimental dataagaingt theANN model
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neura network data. Thisindicatesan excellent agree-
ment between the experimentd and thecal culated data.
Foure5illusratestheANN estimationand experimental
data of temperaturevariationsa ong theannular fixed
bed reactor for different Li content. Thismodel canbe
useful for OCM or other process devel opment and tem-
perature control in such reactors.
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Figure5: Temperaturedistribution alongthereactor

CONCLUSION

Theability of ANN to model and predict tempera:
turedigtribution aong an annular fixed bed reactor which
isusedin OCM process hasbeen investigated in this
work.

Theresults show agood agreement between ex-
perimental dataand those predicted by ANN. Anim-
portant feature of themodel isthat it doesn’t require
any theoretical knowledge or human experienceduring
thetraining process. It hasbeen clearly shown that of
theANN cal culatesthetemperature distribution based
ontheexperimenta dataonly, instead of using empiri-
cal models. Thereforeit is not necessary to use ap-
proximate and complex analytical equationsto calcu-
latetemperature.
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