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ABSTRACT 
 
How to effectively evaluate price of volatility risk is the basis of risk management in
electricity market. Electricity price connotes a grey system, due to uncertainty and
incomplete information for partial external or inner parameters. A two-stage model for
estimating value-at-risk based on grey system and extreme value theory is proposed.
Firstly, in order to capture the dependencies, seasonalities and volatility-clustering, an
GM(1,1) model is used to filter electricity price series. In this way, an approximately
independently and identically distributed residual series with better statistical properties is
acquired. Then extreme value theory is adopted to explicitly model the tails of the
residuals of GM(1,1) model, and accurate estimates of electricity market value-at-risk can
be produced. The empirical analysis shows that the proposed model can be rapidly reflect
the most recent and relevant changes of electricity prices and produce accurate forecasts
of value-at-risk at all confidence levels, and the computational cost is far less than
the existing two-stage value-at-risk estimating models, further improving the ability of
risk management for electricity market participants. 
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 INTRODUCTION 
 
 The introduction of market competitive mechanism has provided more lucrative opportunities for 
the electricity market participants, but also brought price of volatility risk hitherto unknown at the same 
time. Value-at-risk (VaR) is a risk management tool to quantify the level of risk exposure in advance, 
which overcomes the defect of ex-post evaluation for traditional risk management method, so VaR has 
become one of the most popular risk measurement tools in practice. 
 With VaR as the risk measure, the purchasing risk of electric utility is calculated using a normal 
distribution based Delta model[1]. With assumption that the probability distribution of electricity price is 
normal, the impacts of different bidding strategies on the selling risk for generation companies has been 
analyzed based on Monte Carlo simulation, the results show that the minimum risk bidding strategy is 
the one based on marginal cost[2]. By introducing capacity sufficient rate and must-run rate as exogenous 
explanatory variables to depict the generators’ market power and the supply-demand relationship, a 
generalized autoregressive conditional heteroskedasticity model with Gaussian distribution innovations 
(N-GARCH) has been used to assess the price of volatility risk in electricity markets[3]. In view of 
leverage effects of electricity prices, an exponential GARCH (EGARCH) model with Gaussian 
distribution innovations is developed to estimate the trading risk for distribution companies[4]. 
Considering that N-GARCH based VaR calculating model cannot effectively address the leptokurtosis 
and heavy-tailed phenomenon in the data of profit and loss, a resampling method based on a bias-
correction step and the bootstrap has been developed, further improving the VaR forecasting accuracy of 
the N-GARCH model[5]. By utilizing Gram-Charlier series expansion of normal density function and 
student-t distribution to depict the residuals distribution of ARMAX-GARCH model, an estimating 
model of VaR considering the characteristics of electricity price series such as seasonalities, 
heteroscedasticities, skewnesses and lepkurtosises, has been proposed, showing that the model with 
Gram-Charlier series expansion of normal density function can rapidly reflect the recent and relevant 
changes of electricity prices and produce accurate forecasts of VaR at all confidence levels[6]. With 
GARCH-based model, the impacts of probability distribution assumption for innovations on VaR 
estimation accuracy are analyzed for four distributions: normal, student-t, skewed student-t and general 
error distribution (GED). The numerical example based on the historical data of the Pennsylvania-New 
Jersey-Maryland (PJM) market shows that the accuracy and stability of estimated values of VaR are 
heavily dependent on the selection of probability distribution for innovations and the model with GED 
distribution performs better in predicting VaR values[7]. Extreme value theory (EVT) provides a firm 
theoretical foundation to study the asymptotical distribution of extreme value for order statistics, without 
assuming the probability distribution for the sample data. EVT allows extrapolation beyond the sample 
and can accurately describe the behavior of the tails of the real data. De Rozario R.[8] estimated the VaR 
of electricity market using a technique from extreme value theory known as peaks over thresholds 
(POT), showing that the estimated results perform well for moderate to very high confidence levels (95-
90%), but struggle at higher levels (>99%) owing to the extreme clustering and other dependence 
evident in the data. Bystrom H.N.E.[9] extended the classic unconditional EVT approach by first filtering 
the data via GARCH specification to capture some of the dependencies in electricity return series, and 
thereafter applying ordinary EVT techniques. To describe the leverage effects of volatility of electric 
power price, an EGARCH specification is used to filter the return series to obtain independently and 
identically distributed (IID) residuals, showing that the proposed model can produce accurate forecasts 
of VaR in the markets where the distribution of returns is characterized by higher levels of skewness and 
excess kurtosis[10,11]. Electric power energy cannot be stored economically and the influencing factors 
such as load, climate, transmission network, installed capacity have an un-tempered effect on electricity 
prices. In particular, electricity price exhibits considerably richer structure than load curve and has the 
characteristics such as mean reversion, seasonalities, heteroscedasticities, lepkurtosises and extreme 
behavior with fast-reverting spikes. To obtain an approximately IID residual series with better statistical 
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properties, an ARMAX-GARCH model with Gram-Charlier series expansion of normal density function 
or skewed student-t distribution over the error items is used to pre-filter the raw data to capture the 
dependences of electricity price series, further improving the effectiveness of the VaR estimates via 
POT model[12,13]. 
 Although the approximately IID residual series can be acquired by using GARCH models to pre-
filter the electricity price series, the high non-linearity for the GARCH models leads to very large 
computational costs and hinders the wide application in practice. Considering the properties of 
incomplete and uncertain information of the spot prices, which are in line with the characteristics of grey 
variables, a gray system and extreme value theory based two-stage model for estimating VaR is 
proposed in this paper (referred as GM (1,1)-POT-VaR). In stage one, to acquire the approximately IID 
residuals with better statistical properties, a gray GM (1,1) model is used to pre-filter the electricity price 
series. In stage two, an EVT based POT model is employed to explicitly deal with the right tail of the 
residuals of the GM(1,1), and accurate estimates of VaR in electricity market can be produced. There are 
several contributions. First, the paper proposes a model that has the potential to generate more accurate 
quantile estimates for electricity market. The seasonalities, heteroscedasticities and kurtosises of 
electricity prices are addressed via an GM(1,1) specification. In forecasting VaR, EVT is applied to the 
residuals from this model. Clearly, the proposed GM(1,1)-POT-VaR combination is a sophisticated 
approach to forecasting VaR. The second contribution is to acquire an approximately IID residual series 
with better statistical properties by using a gray GM(1,1) model. The effectiveness of the VaR estimates 
via POT model can be further improved. The third contribution of this paper is to compare the accuracy 
of VaR forecasts under the proposed model with a number of conventional approaches proposed in[12,13]. 
Tail quantiles are estimated under each competing model and the frequency with which realized returns 
violate these estimates provides an initial measure of model success. The empirical analysis based on the 
historical data of the PJM electricity market indicates that the GM(1,1)-POT-VaR model can rapidly 
reflect the most recent and relevant changes of electricity prices and can produce accurate forecasts of 
VaR at all significance levels. Moreover, the computational costs is far less than the proposed models 
in[12,13], further improving the risk management ability of electricity market participants. These results 
suggest that the proposed approach is robust and therefore useful. 
 

GRAY GM(1,1) MODEL 
 
 The grey system theory is a multidisciplinary theory dealing with those systems with lack 
information. The grey model is a modeling method based on the concept of grey generating function and 
differential fitting, having the advantages that the predicted results can be tested and less original data 
are needed. Let the observed data series be (0) (0){ ( )}X x k=  and the first-order accumulated generating 
operation (1-AGO) series of (0)X  is (1) (1) (1) (0)

1
{ ( ) | ( ) ( )}k

j
X x k x k x j

=
= = å , among them, 1,2, ,k n= L . Then, the 

dynamic process of (1) ( )x k  can be described by the following GM(1,1) model: 
 

(0) (1)( ) ( ) .x k az k u+ =  (1) 
 
 where, a  and u  are the model parameters to be estimated, (1) (1) (1)( ) ( ) (1 ) ( 1),0 1z k x k x kl l l= + - - £ £  is the 
background value. In traditional GM(1,1) model the l  is usually taken to be a fixed value 0.5. Let 

[ , ]Ta a u=$ , then the estimated values by least squares method is 
 

1( )T T
Na B B B Y-=$  (2) 
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After calibrated a$ , the solution to (1) with initial condition (1) (0)(1) (1)x x=  is 
 

(1) (0) ( 1)( ) (1) .a ku ux k x e
a a

- -æ ö÷ç= - +÷ç ÷÷çè ø
$  (3) 

 
 From (3), and by the first-order inverse accumulated generating operation (1-IAGO) of (1)

( )x k$ , 

the modeling value (0)
( )x k$  can be derived to be 

 
(0) (0) ( 1)( ) (1 )( (1) )a a kx k e x u a e- -= - -$  (4) 

 
 With the operation of electricity market, the new data of electricity price continue to emerge. In 
order to utilize the rich information contained in the new observed values, the new-information grey 
model is used in this paper. That is, each new obtained value will be added to the tail of the data series, 
at the same time, the first observed value will be removed. The research on new-information grey model 
have shown that new-information grey model have some advantages such as small data sets required, 
less computational complexity, objective and reliable forecasted results[14]. 
  

EXTREME VALUE THEORY 
 
 There exists strong temporal dependence in the electricity price series due to the specific features 
of electric power. It violates the underlying assumption that the data series to which EVT is applied 
should be a sequence of IID random variables. In this paper, a two-stage approach, provided by McNeil 
and Frey[15], is used to this problem. Firstly, the heteroscedasticities, skewnesses, lepkurtosises and 
seasonalities of electricity price series are filtered by the GM(1,1) model in Section 2 to obtain a nearly 
IID normalized residual series. In stage two, the EVT framework is applied to the standardized residuals 
to better capture the heavy-tails and improve the accuracy of VaR estimation. 
 POT is to model the excess distribution for the IID sample data that exceed a high threshold. 
Given the distribution function ( )zF z  of a random variable Z , the distribution function of values of z  
above a certain threshold u , ( )uF y , is called the conditional excess distribution function and is defined 
as 
 

( ) Prob( | ), 0 ,u FF y Z u y Z u y z u= − ≤ > ∀ ≤ ≤ −  (5) 
 
 where Z  is a random variable, u  is a given threshold, y z u= −  are the excesses and Fz ≤ ∞  is the 
right endpoint of ( )zF z . We verify ( )uF y  that can be written in terms of ( )zF z , i.e. 
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( ) ( ) ( ) ( )
( ) .

1 ( ) 1 ( )
z z z z

u
z z

F u y F u F z F u
F y

F u F u
+ − −

= =
− −  (6) 

 The theorem of Balkema-De Haan–Pickands states that for large u , the conditional excess 
distribution function ( )uF y  is well approximated by the generalized Pareto distribution (GPD) , ( )ξ σG y , 
which is defined as 
 

1

,

/

1 1 0
( )

1 0

ξ

ξ σ

y σ

ξ y ξ
G y σ

e ξ

−

−

⎧ ⎛ ⎞− + ∀ ≠⎪ ⎜ ⎟= ⎨ ⎝ ⎠
⎪ − ∀ =⎩

 (7) 

 
 for [ )y 0,  ∈ ∞  if 0ξ ≥  and [ ]y 0, /σ ξ∈ −  if 0ξ < . ξ  is the shape parameter or tail index and 0σ >  is 
the scaling parameter. 
 If T  is the total number of observations and uT  the number of observations above the threshold 
u , the value of ( )zF u  can be well approximated by the estimate ( )uT T T−  for sufficiently high u . 
Replacing ( )uF y  by the GPD and ( )zF u  by ( )uT T T− , we obtain the estimate of ( )zF z  from (7) 
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z u σu

T ξ z u ξ
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−
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 (8) 

 
for z u> . 
 A reasonable threshold u  must be chosen to effectively estimate the values of parameters ξ  and 
σ . A popular graphical tool for visually selecting u  is the sample mean excess plot defined by the points 
( , ( ))nu e u . Let ( ) ( ) ( )1 2z z z T> >… >  represent the IID order random variables, ( )ne u  can be calculated by 
 

( )( ) ( ) ( 1) ,
n

n i
i k

e u z u n k
=

= − − +∑  (9) 

 
 where ( ){ }min |k i z i u= > , 1n k− +  is the number of observations exceeding threshold u [13]. If the 
GPD provides a good description of the data ( )ne u  should be approximately linear in u . So we can select 
the value that locates at the beginning of the sample mean excess plot which is roughly linear as the 
suitable threshold. 
 Having determined a threshold, the estimates of ξ  and σ  of the GPD can be obtained by 
applying maximum likelihood estimation for the excesses of a threshold u . Replacing the values of 
parameters by their estimates and inverting (8) for a given probability c , the estimates of the c -th tail 
quantile for the sample distribution can be gotten, 
 

�

$
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= ⎨
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 (10) 

 
which is valid for positive excesses, that is z u> . 
 

ESTIMATION OF VAR 
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 Some characteristics of electricity spot price data naturally lend itself to EVT analysis. For 
instance, electricity itself is non-storable. As such the equilibrium between supply and demand must be 
maintained to guarantee a continuous stream of electricity. This leads to an extremely turbulent market 
where spot prices can rise from average levels to many times this within a very brief period. Large spot 
price movements expose market participants to significant market risk over short periods of time. In this 
situation risk managers will be interested in a risk measure like VaR. The strong temporal dependence in 
the sequence of electricity prices, due to the specific characteristics of electric power, violates the 
underlying assumption that the data sequence to which EVT models are applied should be a sequence of 
IID random variables. In this paper, a two-stage approach, provided by McNeil and Frey[15], is used to 
this problem. Firstly, the dependences, heteroscedasticities, skewnesses, lepkurtosises and seasonalities 
of electricity price series are filtered by a grey GM(1,1) model to obtain a nearly IID residual series { }tε . 
In stage two, the EVT framework is applied to the tails of the nearly IID residuals to better capture the 
heavy-tails and improve the accuracy of VaR estimation. 
 
GM(1,1)-POT-VaR Eestimating Model 
 Value-at-risk is one of the most intuitive and comprehensible risk measures. It is based on the 
standard statistical technology and has become an international popular risk measurement technology. 
Assuming normal market conditions and no trading in a given portfolio, VaR is defined as a threshold 
value such that the probability that the worst loss on the portfolio over a target horizon exceeds this 
value is the given level of probability. Mathematically, the VaR of the portfolio with a confidence 
interval c , cVaR , is defined as 
 

{ }inf |Prob( ) 1cVaR x P x c= ∈ Δ ≥ ≤ −� , (11) 
 
 where Prob(·) denotes the portfolio probability distribution and PΔ  the portfolio losses over the 
given holding period. 
 For a given time horizon t , suppose that the system demand for electricity is tQ , the retail price 
to ultimate customers is 0P , the spot price is ( )1|t t t tp E p I ε−= + , where ( ) ·E  is the conditional expectation 
operator, 1tI −  the information set available at time 1t −  and tε  the random shock such that ( ) 0tE ε =  and 
( ) 0t sE ε ε = , t s∀ ≠ . The trading losses of an electric utility over the target horizon t  is 

 
( )1 0E( | I )t t t t tP Q p ε P−Δ = + − . (12) 

 
 As the retail price, 0P , is a regulated price approved by electricity regulatory departments and the 
electric power demand, tQ , can be accurately forecasted, tQ  and 0P  can be regarded as constant[1]. Let 

( )1 |ε t tf ε I −  denote the conditional probability density function of tε  conditional on 1tI − . The VaR of an 
electric utility in the specified period t with the pre-assigned probability level c , denoted by ,c tVaR , is 
 

, 1 0(E( |I ) ), 11 Prob( ) ( |I )ct t t t

t

VaR Q p Pt ct ε t
Q

c P VaR f x dx−

∞
− − −− = Δ ≥ =∫  (13) 

 
Now inverting (13) for the given probability c , we obtain 
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( )1
, 1 0 1E( | I ) ( | I ) ,c t t t t ε tVaR Q p P F c−

− −= − +  (14) 
 
 where ( )εF ⋅  is the conditional cumulative distribution function of tε , 1Fε

−  is the quantile function 
defined as the inverse of the distribution function εF . 
 The spot price presents the properties of incomplete and uncertain information. It is in line with 
the characteristics of grey variables, so we can estimate the expected values of the electricity spot price 

1E( | I )t tp −  and the c -quantile 1
1( | I )ε tF c−
−  of the residual series tε  by (4) and (10). Then we can calculate 

the VaR of an electric utility in the specified period t by (14). 
 
Backtesting for VaR Estimates 
 It is of crucial importance to assess the accuracy of VaR estimates, as they are only useful insofar 
as they accurately characterize risk. Backtesting or verification testing is the way that we verify whether 
forecasted losses are in line with actual losses. The most widely known backtesting method based on 
failure rates has been suggested by Kupiec[17]. Kupiec’s test measures whether the number of violation 
exceptions (losses larger than estimated VaR) is in line with the expected number for the chosen 
confidence interval. Denoting the number of times that the actual portfolio returns fall outside the 
estimated values of VaR as N  and the total number of observations as T , we may define the number of 
violation exceptions as: 
  

�

�

,

1 ,

1
,

0 .

T c tt
t t

t c tt

if p VaR
N I I

if p VaR=

⎧ >⎪= =⎨
≤⎪⎩

∑  (15) 

 
 Under the null hypothesis that the VaR estimated model is correct at a pre-assigned confidence 
interval, the observed failure rate /N T  should act as an unbiased measure of the level of significance 

1α c= −  as sample size is increased. Assuming that the proposed model is accurate, the following 
likelihood ratio (LR) 
 

( )( )2log 1 2log 1
N T N

N T N N NLR c c
T T

−
−

⎛ ⎞⎛ ⎞ ⎛ ⎞⎜ ⎟=− − + −⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠
 (16) 

 
 is asymptotically 2χ  (chi-squared) distributed with one degree of freedom. If the value of LR 
exceeds the critical value of the 2χ  distribution, the null hypothesis will be rejected and the model is 
deemed as inaccurate. On the contrary, the null hypothesis will be accepted and the model should be 
considered correct. 
 

EMPIRICAL RESULTS 
 
 The PJM is organized as a day-ahead market. Participants submit their buying and selling bid 
curves for each of the next 24 hours. Then the market operator aggregates bids for each hour and 
determines market clearing prices and volumes for each hour of the following day. In this paper, a total 
of 1197 observations of average daily electricity spot prices in dollars per megawatt hour ($/MWh) and 
average daily loads in gigawatt (GW) are employed to validate the performance of the VaR calculating 
model. The sample period begins on 1st June 2007 and ends on 9th September 2010. 
 
Estimates of GM(1,1) Model 
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 Taking the significant Weekly Seasonality of the spot price series into account, the data window 
length is set to 7 in this paper. TABLE 1 illustrates the Ljung–Box Q statistics and the corresponding 
probability values (p-Values) for the residuals and their square sequences. It is seen from TABLE 1, the 
Ljung–Box Q statistics of the residuals and their square series at up to 24 lags suggest that the residual 
series is a series with weakly serial correlation and volatility clustering, approximately meeting the 
prerequisite of EVT modelling[18]. 

TABLE 1 : Ljung-Box test for residuals of GM(1,1) 
 

Statistics Spot prices Residuals 
Q (6) 3845.885(0) 882.765(0) 
Q(24) 11236.91(0) 1235.612(0) 
Q2(6) 3101.59(0) 314.055(0) 
Q2(24) 7868.04(0) 456.305(0) 

 
Estimates of GM(1,1)-POT-VaR Model 
 To apply EVT, the threshold can be selected by the mean excess function or Hill plots. We use 
the mean excess function to calculate the threshold. Figure 1 shows the sample mean excess function for 
the residuals of the grey GM(1,1) model. From a closer inspection of the plot, we find that the sample 
mean excess plot ( )e x  is roughly linear when the value of the threshold u is about 6.295. So we fix the 
threshold u to 6.295. In this case, the number of resulting excesses are 119, accounting for 9.94% of the 
sample. 
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Figure 1 : Mean excess function plots of residuals 
 

 After selecting the threshold u , the residuals above the selected threshold u, which will be used 
as the sample data for EVT implementation, are also determined. The estimates of the shape and scale 
parameters, ξ  and σ , can be determined by fitting the GPD to the residuals via maximum likelihood 
estimator. Inserting the estimates of ξ  and σ  into (10), the tail quantiles of the standardized residual 
series at a given confidence level c  can be calculated. TABLE 2 reports the estimated results for tail 
index, scale parameter and tail quantiles. It can be seen that the ξ  estimates is positive and statistically 
significant, indicating that the right tail of the distribution of standardized residuals is characterized by 
the Fréchet distribution. 
 

TABLE 2 : Estimates of GPD Parameters and Quantiles 
 

threshold shape parameter Scale parameter Confidence level Tail quantile 
6.295 -0.15951 4.029428 95.0% 8.91774 
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97.5% 11.28731 
99.0% 14.04341 
99.5% 15.87647 

 
 In Figure 2, the actual distribution of the residuals over a threshold 6.295 is plotted with respect 
to GPD with a shape parameter -0.15951. The plot clearly shows that the upper tail of the distributions 
over the threshold value 6.295 is well approximated by GPD. 
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Figure 2 : Fitted GPD distribution of Residuals 
 
VaR Estimates and Backtesting 
 Without loss of generality, in this paper we assume that an electric utility has the obligation to 
serve 1MW of load 24 hours a day and the retail price has been frozen at a level equivalent to 0$/MWh. 
Substituting the calculated results at subsection 5.1 and 5.2 into (14), the VaR at each confidence level 
can be estimated. TABLE 3 showes the Kupiec’s test results for actual and forecasted losses. It can be 
seen from TABLE 3 that the null hypotheses of ARMAX-GARCH-st-VaR[12], ARMAX-GARCHSK-
VaR[13] and our proposed GM(1,1)-POT-VaR models cannot be rejected in each significance levels. 
Summarizing the results for the Kupiec’s tests, the VaR predictions by these methods are insignificantly 
different from the proposed downfall probability, but because the GM(1,1)-POT-VaR model is easier to 
deal with and possesses the advantages of less computational costs, this further improves the risk 
management ability for electricity market participants to some extent. 
 

TABLE 3 : Backtests of Estimated VaRs 
 

Confidence level Statistics GARCHSK GARCH-st GM(1,2)-POT

95% 
Expected 60 60 60 
Real 61 60 59 
LR 0.02312 0.000 0.013 

97.5% 
Expected 30 30 30 
Real 32 30 28 
LR 0.144357 0.000 0.130 

99% 
Expected 12 12 12 
Real 11 13 12 
LR 0.081612 0.087 0.000 

99.5% 
Expected 6 6 6 
Real 4 6 7 
LR 0.749611 0.000 0.164 

 
DISCUSSION AND CONCLUSION 
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 The distinctive characteristics of electric energy which cannot be effectively stored through time 
and space and needs instantaneous balance of supply and demand make electricity price present highly 
volatility and occasional extreme movements of magnitudes rarely seen in markets for regular financial 
assets, thus volatility of price risk identification, evaluation and management in electricity market are 
more important than in financial markets. Considering various influencing factors on electricity prices 
and their pertinences, a gray system and extreme value theory based two-stage model for estimating 
VaR is proposed. In stage one, to capture the most important characteristics such as seasonalities, 
heteroscedasticities, skewnesses and lepkurtosises and to acquire the approximately IID residuals with 
better statistical properties, a gray GM(1,1) model is used to pre-filter the electricity price series. In 
stage two, an EVT based model is employed to explicitly deal with the right tail of the residuals of the 
GM(1,1)l, and accurate estimates of VaR in electricity market can be produced. The empirical analysis 
based on the historical data of the PJM electricity market indicates that the GM(1,1)-POT-VaR model 
can rapidly reflect the most recent and relevant changes of electricity prices and can produce accurate 
forecasts of VaR at all significance levels. Moreover, the computational costs is far less than the 
proposed models in[12,13], further improving the risk management ability of electricity market 
participants. These results present several potential implications for electricity market risk 
quantifications and hedging strategies. 
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