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ABSTRACT
In this paper, a four-stage ensemble support vector machine (ESVM) based
on multi-agent learning approach is proposed for credit rating system in
electronic commerce. In the first stage, the initial credit dataset is divided
into two independent subsets: training credit subset (in-sample data) and
testing credit subset (out-of-sample data) for training and verification
purposes. In the second stage, different ESVM learning paradigms with
much dissimilarity are constructed as intelligent agents for credit rating
evaluation. In the third stage, multiple individual ESVM agents are trained
using training rating subsets and the corresponding rating results are
also obtained. In the final stage, all individual rating results produced by
ESVM in the previous stage are aggregated into an ensemble rating result.
In particular, the impact of the diversity of individual intelligent agents on
the generalization performance of the ESVM-based multi-agent learning
way is examined and analyzed. For illustration, one corporate credit rating
dataset is used to verify the effectiveness of the ESVM-based multiagent
learning system.  2013 Trade Science Inc. - INDIA
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INTRODUCTION

The ongoing subprime mortgage crisis event origi-
nated from United States is attracting considerable con-
cerns about credit rating analysis and evaluation. Gen-
erally, multiagent learning can be divided into two cat-
egories: competitive learning, where agents work asyn-
chronously on the same problem and the result of the
best agent is the final output result, and cooperative
learning, where the final output result is a fusion or ag-
gregation of the individual results of some agents. How-

ever, past studies have revealed that an effective
multiagent learning system may not be an individual
model by a single learning agent, but the combination
or ensemble of some agents. Note that in the context of
multiagent learning systems, an agent is usually defined
as an independent learning unit participating as a mem-
ber of the multiagent learning system. Usually, ensemble
learning models outperform single learning models,
whose performance is limited by the imperfection of
feature extraction, learning algorithms, and the inad-
equacy of training data. Another reason supporting this
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proposition is that different single learning models have
their inherent drawbacks. Aggregating them may thus
lead to a better model with a high generalization capa-
bility. From the above descriptions, we can conclude
that there are two essential requirements

in a multiagent ensemble learning system.
To achieve high performance, this paper attempts

to utilize a highly competitive machine learning tool �
support vector machine (SVM), first proposed by
Vapnik� as a generic ensemble learning agent for credit
risk evalution. The main reasons of selecting SVM as
an ensemble learning agent are three-fold. First of all,
SVM requires less prior assumptions about the input
data, such as normal distribution and continuity. This is
different from traditional statistical models. Second,
SVM can perform a nonlinear mapping from an origi-
nal input space into a high dimensional feature space, in
which it constructs a linear discriminant function to re-
place the nonlinear function in the original low-dimen-
sion input space. This characteristic also solves any di-
mension disaster problem because its computational
complexity is not dependent on the sample dimension.
Third, SVM attempts to learn the separating hyper-
plane to maximize the margin, therefore implementing
structural risk minimization (SRM) and realizing good
generalization capability. These important characteris-
tics will also make SVM popular in many practical ap-
plication problems.

The basic procedure of using SVM as a generic
ensemble learning agent to construct a multiagent learning
system consists of four stages. In the first stage, an ini-
tial dataset is divided into two independent subsets: train-
ing subset and testing subset. In some necessary situa-
tions, the third subset, validation subset may be pro-
duced to overcome overfitting problem. In the second
stage, diverse SVM models are created to formulate
the generic ensemble learning agents (i.e., SVM agents)
through using some diversity strategies. In the third stage,
the diverse SVM models are trained by the training sub-
set to produce different results. In the final stage, these
different SVM agents are integrated into an aggregated
output using a specific ensemble strategy.

The main aims of this paper are to construct a SVM-
based multiagent ensemble learning system for credit
risk evaluation and to investigate the effect of both di-
versity strategy and ensemble strategy on the generali-

zation performance of the SVM-based multiagent en-
semble learning system.

METHODOLOGY FORMULATION

In this section, a four-stage SVM-based multiagent
ensemble learning approach is proposed for credit risk
evaluation problems. First of all, the initial dataset is
divided into two independent subsets: training subset
(in-sample data) and testing subsets (out-of-sample
data) for learning and testing purposes. A validation
subset is also included in the training subset by k-fold
cross validation approach. Then, diverse SVM learn-
ing paradigms are used as intelligent agents to analyze
and evaluate credit risk. Subsequently, multiple indi-
vidual SVM agents are trained using training subset and
the corresponding evaluation results are also obtained.
Finally, all individual results produced by multiple single
SVM agents in the previous stage are aggregated into a
final output result.

Data partition

In applications of SVM on multiagent ensemble
learning, data partition is a necessary step. Some re-
search results shown that the data division can have a
significant impact on the results obtained. In previous
similar studies, data division was carried out in all cases.
Generally, data partition is carried out on an arbitrary
basis, and the statistical properties of the respective
datasets are seldom considered. In most cases, two
subsets, i.e., training subset and testing subset, are used.
In this paper, the overall dataset is also divided into two
subsets. Eighty percent of the data are used as the train-
ing subset and the remainder is used as the testing sub-
set. Note that k -fold cross validation is used in the
paper to achieve a more reliable result.

Diverse SVM agent creation

In order to capture the implicit patterns hidden in
the dataset from different perspectives, diverse SVM
agents should be used. Generally, an effective multiagent
ensemble learning system consisting of diverse models
with much disagreement is more likely to have a good
generalization performance in terms of the principle of
bias-variance trade-off. Therefore, how to generate the
diverse models is a crucial factor for constructing an
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effective multiagent ensemble learning system. For SVM
models, several diversity strategies have been investi-
gated for the generation of ensemble members making
different errors. Such diversity strategies basically re-
lied on varying the training samples and parameters re-
lated to the SVM design. In particular, some main di-
versity strategies can be categorized into the following
three aspects:

Data diversity

Because different data often contain different infor-
mation, these different data can generate diverse mod-
els with dissimilarity. Usually, in intelligent learning mod-
els, training dataset is used to construct a concrete model
and thus different training dataset will be an important
source of diversity if the training dataset at hand is func-
tionally or structurally divisible into some distinct train-
ing subsets. In order to achieve diverse models, some
typical data sampling approaches, such as bootstrap
aggregating (bagging) proposed by and noise injection,
are used to create diversity. In this paper, the bagging
algorithm is adopted as a data sampling tool. The bag-
ging approach is a widely used data sampling method
in machine learning. Given that the size of the original
data set DS is P, the size of new training data is N, and
the number of new training data points is m, that is,
each new training subset TR  has m data points,

mTRTRTR ,...,, 21 . Accordingly the bagging algorithm

for generating new training subsets can be shown in
algorithm:.

Input: original data set DS
Output: Thegenerated new training subsets

( mTRTRTR ,...,, 21 )

For t=1 to m
   For i=1 to N
       RandRow=P*rand()
         If RandRowf�P
          P

i
(i, AllColumns)=DS(RandRow,AllColumns)

         End If
      Next i
Next t

Output the final training subsets ( m21 TR,...,TR,TR )
The bagging algorithm is very efficient in construct-

ing a reasonably sized training subset when the size of
the original data set is small due to the feature of its

random sampling with replacement. Therefore, the bag-
ging is a useful data sampling method for machine learn-
ing. In this paper, we use the bagging algorithm to gen-
erate different training subsets.

Parameter diversity

In an SVM model, there are two classes of typical
parameters: regulation parameter and kernel param-
eters. By changing the SVM model parameters, differ-
ent SVM models with high levels of disagreement can
be produced. In this paper, we will investigate the im-
pacts of different kernel parameters on SVM generali-
zation performance.

Kernel diversity

In an SVM model, the kernel function has an im-
portant effect on the generalization performance of
SVM. Hence, using different kernel functions in the
SVM models can also create diverse SVM models. In
the SVM model, the polynomial function, Sigmoidal
function, and RBF function, are several typical kernel
functions. Similarly, this paper will also examine the in-
fluences of different kernel functions on the SVM gen-
eralization performance.

Single SVM agent learning

After determining diverse SVM models, the next
step is to train the different SVM agents to produce
different output results using training subsets. In our
paper, the standard SVM proposed by Vapnik is used
as the intelligent learning agent. The generic idea of SVM
is to maximize the margin hyperplane in the feature space.
Similar to other supervised learning methods, an un-
derlying theme of the SVM is to learn from data, which
adopts the structural risk minimization (SRM) principle
from computational learning theory. Usually, SVM can
be used as regression and classification. In this paper,
we focus on the classification problem.

Let x  be an input vector as  N21 x,...,x,xx   ,

where )N,...,2,1i(x i    is the ith element of x  in the train-
ing subset. Let y  be an output vector as

 N21 y,...,y,yy  , where )N,...,2,1i(y i   is the ith ele-
ment of .  is the number of training data points. In SVM
classification, iy   is the class value of the training data

point ix . Using ix  and iy , the SVM classification prob-
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lem can be represented in the following optimization
problem:
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where a   is a normal vector of the hyperplane as
}a,...,a,a{a N21 , where )N,...,2,1i(a i    is the ith

element of a  . b  is a bias that is a scalar )x( i . is a

nonlinear mapping function for the ith input data ix  from

a low-dimension space to a high-dimension space.   is
a tolerable misclassification error vector as

},...,,{ N21  , where )N,...,2,1i(i   is the ith

misclassification error of   C .  is a regulation param-
eter controlling the trade-off between the maximal mar-
gin and the tolerable misclassification errors. When C
is large, the error term will be emphasized. Small  C
means that the large classification margin is encouraged.
Vapnik found that training a SVM model will lead to a
quadratic programming (QP) problem with bound con-
straints and linear equality constraints, as shown in Eq.
(2).
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where   is a vector of Lagrange multipliers as
},...,,{ N21  , where  )N,...,2,1i(i  is the i th

Lagrange multiplier of   corresponding to i th inequal-
ity constraint defined in Eq.

(1). )ji,N,...,2,1j,i)(x,x(K ji    is defined as the ker-

nel function with )x()x()x,x(K j
T

iji  . The elegance

of using the kernel function is that one can deal with
feature spaces of arbitrary dimensionality without hav-
ing to compute the nonlinear map function )x(  explic-

itly, where }x,...,x,x{x N2i  . Any function that satisfies
Mercer�s condition can be used as the kernel function
for SVM models. Typical examples of the kernel func-
tion are the polynomial kernel ÿradial basis func-

tion d
j

T
ijipoly )1xx()x,x(K   (RBF) kernel:

)
xx

exp()x,x(K 2

2

ji
jirbf 


 , and sigmoid kernel

)xxtanh()x,x(K j
T
ijisig  , where d, ,P and are the

kernel parameters.
From the implementation point of view, training

SVM is actually equivalent to solving the linearly con-
strained QP problem. By solving the QP problem, the
final output function  )z(f of the SVM model can be
represented as





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1l

)r(
l

)r(
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)r(
l b)x,z(Ky)z(f (3)

where )N,...,2,1l( L
)r(

l  is the l th element of a support

vector )r( , },...,,{ )r(

LN
)r(

2
)r(

1
)r(

 , which is selected

from  , the vector of Lagrange multipliers, defined in
Eq. (2). LN  is the number of elements of the support

vector )r( . Generally, the  LN is less than the number
of training data points N  in many practical problems,

namely, NN L  )N,...,2,1l(x L
)r(

l  .  is the lth element

of a vector  )r(x corresponding to the l th element of

support vector )r(  . The vector )r(x  is a part of the

input vector x  as  }x,...,x,x{x )r(

LN
)r(

2
)r(

1
)r(
 selected from

the input x vector satisfying the conditions shown in

Eq. (2). )N,...,2,1l(y L
)r(

l   is the th element of  corre-

sponding to the l th element )r(y of support vector )r( .

The vector )r(y   is a part of output vector y  as

}y,...,y,y{y )r(

LN
)r(

2
)r(

1
)r(
  selected from the output vec-

tor  satisfying the conditions shown in Eq. (2). z is a
testing data vector as }z,...,z,z{z m21 , where m is the
number of testing data points and  b is defined in Eq.
(1).

Through training SVM, model parameters can be
determined and accordingly the SVM classifier F(z)
can be represented as
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where sign  is an indicator function and other symbols
are identical to Eq. (3).

With the above SVM classifier, some results for a
specific problem can be achieved.

Multiagent ensemble learning

When individual SVM agents are generated, each
SVM agent can output its own computational results
for a specific problem. Although one agent based on a
single SVM model may have good performance, it is
sensitive to samples and parameter settings, i.e. each
single SVM agent may have some biases. One effec-
tive way to reduce the bias is to integrate these SVM
agents into an aggregated output for final results. FIgure

agents.
In the first strategy, several common ensemble ap-

proaches, e.g., boosting (Schapire, 1990), can be em-
ployed to generate the exact number of diverse learn-
ing agents for ensemble purpose. That is, no selection
process will be used in this strategy, and all the learning
agents produced will be combined into an aggregated
output. In the second strategy, the main aim is to create
a large number of agent candidates and then choose
some most diverse agents for the ensemble. The selec-
tion criterion includes some error diversity measures,
such as mean squares errors (MSE), which is intro-
duced in detail by Partridge & Yates (1996). Because
the first strategy is based upon the idea of creating di-
verse SVMs at the early stage of ensemble design, it is
more effective than the second strategy; especially for
some conditions where some powerful computing re-
sources are restricted. However, the main reason is that

FIgure 2 : The structure of multiagent ensemble learning system.

2 shows the structure of the multiagent ensemble learn-
ing system, where p is the number of learning agents.

From the previous descriptions and FIgure 2, it is
easy to find that how to construct the combiner, and
how to create diversity among the multiple agents, are
the two main factors in building an effective multiagent
ensemble learning system. Because the previous sec-
tions have introduced some diverse SVM agents by
using different diversity strategies, how to construct an
efficient combiner has been a key factor in constructing
an effective multiagent ensemble learning system.

However, before integrating these SVM agents,
strategies for selecting SVM agents must be noted. Gen-
erally, these strategies can be divided into two catego-
ries: �$producing an exact number of SVM learning
agents; and a$overproducing SVM learning agents and
then selecting a subset of these overproduced SVM

the second strategy is not preferred is because it can-
not avoid occupying large amounts of computing time
and storage space while creating a large number of en-
semble agent candidates, some of which are to be later
discarded.

Generally, there are some ensemble strategies to
take into account different results in the existing litera-
tures. Typically, majority voting and weighted averag-
ing are two popular ensemble

strategies. The main objective of majority voting
strategy is to determine the vote of the majority of the
population of learning agents. To our knowledge, ma-
jority voting is one of the most widely used ensemble
strategies due to its easy implementation. In the major-
ity voting strategy, each agent has the same weight and
the voting of the ensemble agents will determine the
final result. Usually, it takes over half the ensemble agents
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to agree in order for a result to be accepted as the final
output of the ensemble, regardless of the diversity and
accuracy of each agent�s generalization. In the
mathematic form, the result of the final ensemble output
G(z) can be represented as

)p/)z(F(sign)z(G
p

1k
k



 (5)

where z is a testing data vector as  }z,...,z,z{z m21 de-

fined in Eq.(3), )z(Fk  is the output result of the th learning
agent presented in Eq. (4), using the testing data vector
z,m is the number of testing data points and  p is the
number of learning agents. Although this strategy is easy
to be used and implemented, a serious problem associ-
ated with majority voting is that it ignores the fact that
some learning agents that lie in a minority sometimes
produce the more accurate results. At the ensemble
stage, it ignores the existence of diversity that is the
motivation for a multi-agent ensemble learning system.

Weighted averaging is where the final output result
is calculated in terms of single agents� performance, and
a weight is attached to each single agent�s output. The
sum of the total weight is one and each agent is entitled
to a portion of this total weight based on their perfor-
mance. A typical binary classification example is to use
validation examples to determine the performance
weight. Suppose that  represents the number of ob-
served Class  instances that are mistakenly classified as
Class B by an agent, AA denotes the number of cor-
rectly classified Class A instances that belong to Class
A; AB represents the number of observed Class B in-
stances that are mistakenly classified as Class A, while
BB  represents the number of correctly classified Class
B  instances that belong to Class B. Some common
measures used to evaluate the performance of the agent
are defined below:

BABB
BB

ySpecificitacyTypeIAccur
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ABAA

AA
ySensitivitracyTypeIIAccu


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Each SVM agent is trained by a training dataset
and is verified by the validation samples. Assume that
the total accuracy of validation samples of agent k  is

denoted by kTA , the weight of SVM agent  k denoted

by  kw can be calculated as




 p

1k
k

k
k

TA

TAw
(9)

Then the final ensemble output value G(z) of this
strategy is shown as follows:

))z(Fw(sign)z(G
p

1k
kk



 (10)

where kw  is the k th weight for k  th agent and other
symbols are identical to Eq. (5).

The above TA -based weight averaging ensemble
strategy is a typical class of ensemble strategy, the de-
termination of the weight is heavily dependant on the
validation samples. When there is no validation subset
in data division, this ensemble strategy will be useless.

DATA DESCRIPTION AND
EXPERIMENT DESIGN

In this section, a British credit card application ap-
proval dataset is used. It is from a financial service com-
pany in England, obtained from the accessory CDROM
of Thomas, Edelman, Crook. The dataset includes de-
tailed information of 1225 applicants, including 323
observed bad applicants. In the 1225 applicants, the
number of good cases (902) is nearly three times that
of bad cases (323). To make the numbers of the two
classes near equal, we triple the number of bad cases,
i.e. we add two copies of each bad case. Thus the total
dataset grows to 1871 cases. The purpose of doing
this is to avoid having too many good cases or too few
bad cases in the training samples. Then we randomly
draw 1000 cases comprising 500 good cases and 500
bad cases from the total of 1871 cases as the training
samples and treat the rest as testing samples (i.e. 402
good applicants and 469 bad applicants). In these cases,
each case is characterized by 14 decision attributes,
which are described as follows:
(1) Year of birth.
(2) Number of children.
(3) Number of other dependents.
(4) Is there a home phone.
(5) Applicant�s income.



Yuqiang Qin and Yudong Qi 929

FULL PAPER

BTAIJ, 8(7) 2013

BioTechnology
An Indian Journal

BioTechnology

(6) Applicant�s employment status.
(7) Spouse�s income.
(8) Residential status.
(9) Value of home.
(10) Mortgage balance outstanding.
(11) Outgoings on mortgage or rent.
(12) Outgoings on loans.
(13) Outgoings on hire purchase.
(14) Outgoings on credit cards.

Using this dataset and previous descriptions, we
can construct a practical SVM-based multiagent en-
semble learning system for credit risk evaluation. The
basic purpose of the multiagent ensemble learning model
is to make full use of knowledge and intelligence of each
agent in the multiagent ensemble learning system. In this
multiagent ensemble learning system, agents are some
intelligent techniques or intelligent agents.

Subsequently, in order to investigate the impacts of
diversity strategy and ensemble strategy on the perfor-
mance of a multiagent ensemble learning system, we
perform different experiments with diverse diversity
strategies and ensemble strategies. When testing the
effects of diversity strategies on the performance of a
multiagent ensemble learning system, the ensemble strat-
egy is assumed to be fixed. Similarly, the diversity strat-
egy will be fixed if the impacts of ensemble strategies
on the performance of the multiagent ensemble learning
system are evaluated.

In the testing of diversity strategies, a majority vot-
ing based ensemble strategy is adopted. For data di-
versity, a bagging algorithm is utilized. In this paper, we
use five different training scenarios for SVM learning.
For example, we use 500 training sets (i.e. P = 1871,
N = 1000, and m = 500) to create 500 different evalu-
ation results for each intelligent agent. In this case, the
SVM model with a RBF kernel is used as an intelligent
learning agent. The parameters of SVM including regu-
lation parameter and kernel parameters are determined
by a grid search.

For parameter diversity, we use SVM models with
the RBF kernel as intelligent learning agents. Accord-
ingly, the regulation parameter C and RBF kernel pa-
rameter r2 will be changed. The training data used is
the initial training data produced by data partition.

For kernel diversity, three typical kernel functions,
polynomial function, RBF function and sigmoid func-

tion are used. In this case, the parameters of SVM are
determined by a grid search. The training data used is
the initial training data produced by data partition.

In the testing of ensemble strategies, bagging-based
diversity strategy is used. In this case, the SVM models
with the RBF kernel are used as intelligent learning
agents. The parameters of SVM are determined by a
grid search.

EXPERIMENTAL RESULTS

Using the previous experiment design, three types
of different experiments were conducted. The first was
the diversity strategy testing experiment, the second was
the ensemble strategy testing experiment, and the final
one was the performance comparison of different mod-
els.

Diversity strategy testing

In this subsection, three different diversity strate-
gies, data diversity, parameter diversity and kernel di-
versity, were used to investigate the impact on the
multiagent ensemble learning model in group decision
making.

In the data diversity testing, the main goal was to
examine the impact of the number of training samples
on the generalization performance of the multiagent en-
semble learning model. For this purpose, we adopted
the bagging algorithm to create 100, 500, 1000, 2000
and 5000 different training samples (5 different sce-
narios), as mentioned previously. Using these different
training samples, different single SVM models with dis-
similarities were produced. With the trained SVM mod-
els, some classification results were achieved. Using the
majority voting strategy, the final multiagent ensemble

TABLE 1 : Performance comparisons of SVM ensemble
learning with data diversity.

Number of 

training 

samples 

Type I(%) 
Type 

II(%) 

Total 

accuracy(%) 

100 66.94[3.58] 63.45[3.93] 65.12[3.77] 

500 69.38[3.23] 66.36[3.71] 67.82[3.52] 

1000 73.44[2.81] 67.93[3.26] 70.54[3.03] 

2000 73.97[2.76] 68.14[3.15] 70.91[2.87] 

5000 73.65[2.73] 68.72[3.29] 71.06[2.85] 
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results were obtained from the multiagent ensemble
learning system. Accordingly the final computational
results are shown in TABLE 1. Note that the values in
brackets are standard deviations.

Based on the results in TABLE 1, two conclusions
can be easily drawn. On the one hand, as the number
of training samples increases, the performance improve-
ments are increased from the perspective of total accu-
racy. On the other hand, the degree of performance
improvement from 100 datasets to 1000 datasets is
larger than the degree of performance improvement
from 1000 datasets to 5000 datasets, which indicates
that the degree of performance improvement is not fully
dependant on the number of training samples.

In the parameter diversity testing, the SVM models
with the RBF kernel are used as intelligent learning
agents. Therefore, different regulation parameters  and
kernel parameters  are used to create diversity. In par-
ticular, the regulation parameter  varies from 10 to 100
with a step size of 10 and the kernel parameter  changes

from 10 to 100 with a step size of 10. Some computa-
tional results are shown in TABLE 2.

From TABLE 2, we can observe that different pa-
rameter settings can lead to different generalization per-
formance, but the differences are insignificant. More
specifically, the classification performance on the test-
ing data increases when C increases from 10 to 80, but
the classification performance decreases when C in-
creases from 90 to 100. Thus a suitable regulation pa-
rameter is of utmost importance to SVM learning. The
main reason is that the regulation parameter C is an
important trade-off parameter between margin maxi-
mization and tolerable classification errors. If the selec-
tion of regulation parameter C is inappropriate, it might
lead to unexpected generalization results. But these re-
sults partly support the conclusions of Kim (2003) &
Tay & Cao (2001). However, for kernel parameter r2,
it is difficult to find similar results. The possible reason
is worth exploring further in the future research.

Similarly, we can also use different kernel functions

TABLE 2 : Performance comparisons of SVM ensemble learning with different parameters.

C  2  Type I(%) Type II(%) Total accuracy(%) 

10 10,20,�,100 67.48[4.01] 63.75[3.54] 65.32[3.82] 

20 10,20,�,100 69.34[3.84] 64.89[3.78] 66.81[3.94] 

30 10,20,�,100 68.96[3.33] 65.05[3.66] 66.88[3.53] 

40 10,20,�,100 69.58[4.21] 64.98[4.08] 67.14[4.14] 

50 10,20,�,100 70.24[3.57] 65.46[4.14] 67.51[3.88] 

60 10,20,�,100 69.87[4.01] 66.63[4.26] 68.22[4.12] 

70 10,20,�,100 71.32[3.82] 67.89[4.01] 69.44[3.96] 

80 10,20,�,100 70.45[3.51] 69.34[3.83] 69.53[3.73] 

90 10,20,�,100 70.08[4.14] 69.08[4.54] 69.39[4.31] 

100 10,20,�,100 69.87[4.76] 67.85[5.04] 68.57[4.89] 

10,20,�,100 10 69.65[4.25] 67.42[3.96] 68.93[4.15] 

10,20,�,100 20 71.93[3.92] 66.38[4.33] 68.67[4.18] 

10,20,�,100 30 68.02[4.61] 66.42[3.89] 67.14[4.27] 

10,20,�,100 40 69.98[4.83] 67.02[4.22] 68.49[4.54] 

10,20,�,100 50 68.69[3.95] 64.87[4.45] 66.78[4.29] 

10,20,�,100 60 69.65[3.32] 66.22[3.86] 67.54[3.66] 

10,20,�,100 70 67.43[4.47] 66.38[3.92] 66.76[4.23] 

10,20,�,100 80 68.52[4.81] 65.15[3.74] 66.82[4.43] 

10,20,�,100 90 66.49[4.09] 65.41[4.45] 65.78[6.09] 

10,20,�,100 100 67.56[3.85] 66.24[4.08] 66.78[3.97] 
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to create a multiagent SVM ensemble learning system
for credit risk evaluation. For this purpose, three dif-
ferent kernel functions: polynomial function, sigmoid
function and RBF function are used for testing. In or-
der to construct a diverse ensemble learning system,
1000 copies of the same training dataset are repli-
cated. In the 1000 training data points, different ker-
nel functions are hybridized to create the kernel di-
versity. Note that in every experiment only one kernel
function dominates the multiagent ensemble learning
system. Detailed configuration of the kernel functions
and corresponding computational results are shown
in TABLE 3.

TABLE 3 : Performance comparisons of SVM ensemble learning with kernel diversity.

No. Kernel functions Type I(%) Type II(%) Total accuracy(%) 

1 600Poly+200Sig+200RBF 64.76[4.76] 61.89[5.05] 63.25[4.94] 

2 200Poly+600Sig+200RBF 68.14[4.28] 65.51[4.69] 66.68[4.55] 

3 200Poly+200Sig+600RBF 71.32[4.93] 68.13[4.71] 68.59[4.87] 

From TABLE 3, several interesting results should
be noted. First of all, the multiagent ensemble learn-
ing system dominated by the RBF-type kernel func-
tion produces the best classification results, followed
by the sigmoid kernel and the polynomial kernel. Sec-
ond, in terms of the total accuracy, there is a signifi-
cant difference at the 10% level in the two-tail t-test
between RBF kernel function and polynomial kernel
function. Third, although the multiagent ensemble
learning system dominated by the RBF kernel is ad-
vantageous to the ensemble learning system domi-
nated by the sigmoid kernel, the robustness of the
former is slightly worse than that of the latter (deter-

mined from the standard deviation measure). The
possible reason for this is unknown, and worth ex-
ploring further.

CONCLUSIONS

In this paper, a multi-stage SVM-based multi-agent
ensemble learning system was proposed for credit risk
evaluation problems. For the purposes of verification,
one publicly available credit dataset was used in order
to test effectiveness and classification power. In par-
ticular, multiple different experiments were conducted
to test the impact of various diversity strategies and
ensemble strategies on the performance of a SVM-
based ensemble learning system. All results reported in
the experiments clearly show that the proposed SVM-
based multi-agent ensemble learning approach can con-
sistently outperform the other comparable models, in-
cluding the other

two ensemble learning models and the five single
agent learning systems. The obtained results reveal that
the proposed SVM-based multi-agent ensemble learn-
ing model can provide a promising solution to credit
risk evaluation problem and implies that the proposed
SVM-based multi-agent ensemble learning technique
has a great potential in its application to other classifi-
cation problems.
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