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ABSTRACT KEYWORDS
Inthis paper, afour-stage ensembl e support vector machine (ESVM) based Ensembl e Support vector
on multi-agent learning approach is proposed for credit rating systemin machine (ESVM);

electronic commerce. Inthefirst stage, theinitial credit dataset isdivided
into two independent subsets: training credit subset (in-sample data) and
testing credit subset (out-of-sample data) for training and verification
purposes. In the second stage, different ESVM learning paradigms with
much dissimilarity are constructed as intelligent agents for credit rating
evaluation. Inthethird stage, multipleindividual ESVM agentsaretrained
using training rating subsets and the corresponding rating results are
also obtained. In the final stage, all individual rating results produced by
ESVM inthe previous stage are aggregated into an ensembl e rating result.
In particular, theimpact of the diversity of individual intelligent agents on
the generalization performance of the ESV M-based multi-agent learning
way isexamined and analyzed. For illustration, one corporate credit rating
dataset is used to verify the effectiveness of the ESVM-based multiagent
learning system. © 2013 Trade Sciencelnc. - INDIA

Credit rating system; Multi-
agent learning approach;
Multi-agent technology;

Credit dataset.

INTRODUCTION

The ongoing subprimemortgage crisisevent origi-
nated from United Statesisattracting cons derable con-
cernsabout credit rating analysisand eva uation. Gen-
erally, multiagent learning can bedivided into two cat-
egories: competitivelearning, whereagentswork asyn-
chronoudly on the same problem and theresult of the
best agent isthefinal output result, and cooperative
learning, wherethefinal output resultisafusion or ag-
gregation of theindividua resultsof someagents. How-

ever, past studies have revealed that an effective
multiagent learning system may not be an individual
model by asinglelearning agent, but the combination
or ensemble of some agents. Notethat inthe context of
multiagent learning systems, an agent isusualy defined
asanindependent |earning unit partici pating asamem-
ber of themultiagent learning system. Usudly, ensemble
learning model s outperform single learning models,
whose performanceislimited by theimperfection of
feature extraction, learning algorithms, and theinad-
equacy of training data. Another reason supportingthis
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propositionisthat different snglelearningmode shave
their inherent drawbacks. Aggregating them may thus
lead to abetter modd with ahigh generalization capa
bility. From the above descriptions, we can conclude
that therearetwo essentia requirements
inamultiagent ensemblelearning system.

To achieve high performance, this paper attempts
to utilizeahighly competitivemachinelearning tool —
support vector machine (SVM), first proposed by
Vapnik— asageneric ensemblelearning agent for credit
risk evalution. Themain reasonsof selecting SVM as
an ensemblelearning agent arethree-fold. First of all,
SVM requires|ess prior assumptions about theinput
data, suchasnormal distribution and continuity. Thisis
different from traditional statistical models. Second,
SVM can perform anonlinear mapping froman origi-
nal input spaceinto ahigh dimensiona festure space, in
whichit congtructsalinear discriminant functionto re-
placethenonlinear functionintheorigind low-dimen-
sioninput space. Thischaracteristic also solvesany di-
mension disaster problem becauseits computational
complexity isnot dependent on thesampledimension.
Third, SVM attemptsto learn the separating hyper-
planeto maximizethemargin, thereforeimplementing
structura risk minimization (SRM) and redizing good
generalization capability. Theseimportant characteris-
ticswill alsomake SVM popular inmany practica ap-
plication problems.

The basic procedure of using SVM asageneric
ensemblelearningagent to congtruct amultiagent learning
system consistsof four stages. Inthefirst stage, anini-
tid datasetisdividedintotwoindependent subsats train-
ing subset and testing subset. In some necessary Situa
tions, thethird subset, validation subset may be pro-
duced to overcome overfitting problem. In the second
stage, diverse SYM modelsare created to formulate
thegenericensemblelearning agents(i.e., SVM agents)
through usngsomediversty srategies. Inthethird stage,
thediverse SVM modd saretrained by thetraining sub-
set to producedifferent results. Inthefina stage, these
different SV M agentsareintegrated into an aggregated
output using aspecific ensemble strategy.

Themanamsof thispaper areto construct aSV M-
based multiagent ensemblelearning system for credit
risk eva uation and to investigate the effect of both di-
versity strategy and ensembl e strategy onthegenerali-
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zation performance of the SV M-based multiagent en-
semblelearning system.

METHODOLOGY FORMULATION

Inthissection, afour-stage SV M-based multiagent
ensemblelearning approach isproposed for credit risk
evaluation problems. First of al, theinitial dataset is
divided into two independent subsets: training subset
(in-sample data) and testing subsets (out-of-sample
data) for learning and testing purposes. A validation
subset isa soincludedinthetraining subset by k-fold
crossvalidation approach. Then, diverse SVM learn-
ing paradigmsare used asintelligent agentsto anayze
and eva uate credit risk. Subsequently, multipleindi-
vidud SVM agentsaretrained using training subset and
the corresponding eva uation resultsarea so obtained.
Fnaly, dl individud resultsproduced by multiplesngle
SVM agentsinthe previousstage areaggregated intoa
find output result.

Datapartition

In applications of SVM on multiagent ensemble
learning, datapartition isanecessary step. Somere-
search results shown that the datadivision can havea
significant impact on theresultsobtained. In previous
smilar sudies, datadivisonwascariedoutinall cases.
Generally, datapartitioniscarried out on an arbitrary
basis, and the statistical properties of the respective
datasets are seldom considered. In most cases, two
Subsets, i.e, training subset and testing subset, areused.
Inthispaper, theoveral dataset isd sodivided into two
subsets. Eighty percent of thedataareused asthetrain-
Ing subset and theremainder isused asthetesting sub-
set. Notethat k -fold crossvalidation isused in the
paper to achieveamorereliableresult.

Diverse SVM agent creation

In order to capturetheimplicit patternshiddenin
the dataset from different perspectives, diverse SVM
agentsshould beused. Generdly, an effective multiagent
ensemblelearning system consisting of diversemodels
with much disagreement ismorelikely to have agood
generdization performancein termsof theprincipleof
bias-variancetrade-off. Therefore, how to generatethe
diversemode sisacrucial factor for constructing an
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effectivemultiagent ensemblelearning system. For SVYM
models, severd diversity strategieshave been investi-
gated for the generation of ensemblemembers making
different errors. Such diversity strategiesbasically re-
lied onvarying thetraining samplesand parametersre-
lated to the SVM design. In particular, somemain di-
versity strategiescan be categorized into thefollowing
three aspects.

Datadiversity

Becausedifferent dataoften contain different infor-
mation, these different datacan generatediverse mod-
eswithdissmilarity. Usudly, inintdligent learningmod-
els, training dataset isused to construct aconcrete model
and thusdifferent training dataset will bean important
sourceof divergity if thetraining dataset at handisfunc-
tiondly or sructurdly divisbleinto somedistinct train-
ing subsets. In order to achieve diverse models, some
typical datasampling approaches, such as bootstrap
aggregating (bagging) proposed by and noiseinjection,
areused to create diversity. In this paper, the bagging
agorithmisadopted asadatasamplingtool. Thebag-
ging approachisawiddy used data sampling method
inmachinelearning. Giventhat thesizeof theorigina
dataset DSisP, thesizeof new training dataisN, and
the number of new training data pointsism, that is,
each new training subset TR has m data points,

TR, TR,,..., TR, . Accordingly the bagging algorithm
for generating new training subsets can be shownin
agorithm:.

Input: origina dataset DS

Output: Thegenerated new training subsets

(TR,TR,,..., TR;)
Fort=1tom
Fori=1toN
RandRow=P*rand()
If RandRowf” P
P (i, AllColumns)=DS(RandRow,All Columns)
End If
Nexti
Nextt
Output thefind trainingsubsets(TR,, TR,,..., TR, )
Thebaggingdgorithmisvery efficientin construct-
ing areasonably sized training subset when the size of
the original data set is small dueto the feature of its

random sampling with replacement. Therefore, thebag-
gingisaussful datasampling method for machinelearn-
ing. Inthispaper, weusethe bagging a gorithmto gen-
eratedifferent training subsets.

Parameter diversity

Inan SVM model, therearetwo classesof typical
parameters:. regul ation parameter and kernel param-
eters. By changing the SVM modd parameters, differ-
ent SVYM modelswith highlevelsof disagreement can
be produced. Inthis paper, wewill investigatetheim-
pacts of different kernel parameterson SVM generali-
zation performance.

Kernd diversity

Inan SVM model, thekernel functionhasanim-
portant effect on the generalization performance of
SV M. Hence, using different kernel functionsin the
SVM modelscanaso creatediverse SVYM models. In
the SVYM modéd, the polynomid function, Sigmoidal
function, and RBFfunction, are severa typical kerne
functions. Similarly, thispgper will dso examinethein-
fluences of different kernd functionsonthe SVYM gen-
erdization performance.

Single SVM agent learning

After determining diverse SVM models, the next
stepistotrain thedifferent SVM agentsto produce
different output results using training subsets. In our
paper, the standard SVM proposed by Vapnik isused
astheintdligent learning agent. Thegenericideaof SVM
Isto maximizethemargin hyperplaneinthefeaturepace
Similar to other supervised learning methods, an un-
derlyingthemeof theSVM istolearnfrom data, which
adoptsthe structurd risk minimization (SRM) principle
from compuitationa learningtheory. Usudly, SVM can
be used asregression and classification. In this paper,
wefocusonthe classification problem.

Let x be an input vector asx={x,,x,,..Xy} ,
wherex; (i=12,...,N) istheitheementof x inthetrain-
ing subset. Let y be an output vector as
y={y1.YsYy}, Wherey, (i=12,..,N) istheithele-
ment of . isthenumber of training datapoints. INnSVM
classfication,y, istheclassvaueof thetraining data

point x, . Usng x; and y, , theSVM classfication prob-
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lem can berepresented in thefollowing optimization
problem:

min J(a,b,&) = (¥))a"a+ cigi

st.y; [(P(Xi)'ai + b]2 1-¢;,
£ 20i=12..,N @
where a is anormal vector of the hyperplane as

a={a,,a,,.,a,}, where a, =(i=12,..,N) istheith
element ofa . p isabiasthat isascalar ¢(x;).isa
nonlinear mapping function for theithinput deta x; from
alow-dimenson spaceto ahigh-dimensionspace.§ is
a tolerable misclassification error vector as
E={&,,&,,...E\}, Where & (i=12,..,N) is the ith
misclassfication error of § ¢ . isaregulation param-
eter controlling thetrade-off between themaxima mar-
ginand thetolerable misclassification errors. When C
islarge, theerror term will be emphasized. Small C
meansthat thelarge dlassification marginisencouraged.
Vapnik found that trainingaSVM modd will leadtoa
quadratic programming (QP) problem with bound con-
sraintsand linear equality congtraints, asshownin Eq.

).

maxJ(a)=iai —(%)

_ZaiajyiyJ'(P(Xi)T(P(Xj)

ij=1

=Zo‘i_ %)zo‘iajyiyjK(Xi’Xj) 2
i=1 ij=1

st.) a;y; =00<a, <C,i=12..,N

I
i=1

where o is a vector of Lagrange multipliers as
a={a,,a,,.,ay}, where a,(i=12..,N)isthei th
Lagrangemultiplier of o correspondingtoi thinequal-
ity constraint defined in Eq.
(1).K(x;,x;)(i,j=1.2..,N,i =) isdefined astheker-
nel functionwith K (x;,x;) = @(x;) " (x,) . Theelegance

of using thekernel function isthat onecan deal with
feature spacesof arbitrary dimens onality without hav-

ing to computethenonlinear map function ¢(x) explic-
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itly, wherex ={x; , x,,..,xy} -Anyfunctionthat stisfies
Mercer’s condition can be used asthekernel function
for SVM modds. Typica examplesof thekernd func-
tion are the polynomia kernel yradial basis func-

tionk ., (x;,.x;)=(xx;+1)* (RBF) kernel:

K o (X, ,xj)=exp(_|xi _Xi|4), and sigmoid kernel

K ¢ (X;,X;) =tanh(px{ x; +8) ,whered,s ,P and arethe
kernd parameters.

From theimplementation point of view, training
SVM isactudly equivaent to solving thelinearly con-
strained QP problem. By solving the QP problem, the
final output function f(z) of the SVM model can be
represented as

NL
f(2)=3 a{"y("K(zx{")+b ©)
1=1

where o (1 =1,2,...,N, ) isthel theement of asupport

vector ¢, a" ={a{’,a’,..,af) }, whichisselected
from o, thevector of Lagrange multipliers, definedin
Eq. (2). N, isthenumber of elementsof the support
vector o . Generally, the N, islessthanthe number
of training datapoints N inmany practical problems,
namely, N, <N x(”(1=12,.,N,). isthelthelement
of avector 4o corresponding to thel th element of
support vector o . The vector yo isapart of the

input vector x as x ={x{",x{’,...x{ } selectedfrom
theinput  vector satisfying theconditionsshownin
Eq.(2). y“(=12,..,N,) isthethelement of corre-
spondingtothel thelement vy of support vector o).

The vector y© is a part of output vector y as

y© ={y{",y$....y\) } selected from the output vec-
tor satisfyingthe conditionsshowninEg. (2). zisa
testing datavectoras z={z,, z,,..., z,,} , wheremisthe

number of testing datapointsand bisdefinedin Eq.
(D).

Throughtraining SVM, model parameters can be
determined and accordingly the SVM classifier F(2)
can berepresented as
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F(z) = sign(f (2))
=sign(NzLaf”yf”K(z,x.‘”)+b) “)
1=1

where sign isanindicator function and other symbols
areidentica to Eq. (3).

Withtheabove SVM classifier, someresultsfor a
specific problem can be achieved.

Multiagent ensemblelearning

Whenindividua SVM agentsaregenerated, each
SVM agent can output its own computational results
for aspecific problem. Although one agent based ona
single SVM model may have good performance, itis
sengitive to samples and parameter settings, i.e. each
single SV M agent may have somebiases. One effec-
tiveway toreducethebiasistointegrate these SVM
agentsinto an aggregated output for fina results. Figure

agents.

Inthefirst strategy, severa common ensemble ap-
proaches, e.g., boosting (Schapire, 1990), canbeem-
ployed to generate the exact number of diverselearn-
ing agentsfor ensemble purpose. That is, no selection
processwill beusedinthisstrategy, and dl thelearning
agents produced will be combined into an aggregated
output. Inthe second strategy, themainamisto create
alarge number of agent candidates and then choose
somemost diverse agentsfor theensemble. Theselec-
tion criterion includessomeerror diversity measures,
such as mean sgquares errors (MSE), whichisintro-
ducedindetail by Partridge & Yates (1996). Because
thefirst strategy isbased upon theideaof creating di-
verse SV Msat theearly stage of ensembledesign, itis
more effectivethan the second strategy; especialy for
some conditionswhere some powerful computing re-
sourcesarerestricted. However, themainreasonisthat

SVM Agentl [

Resultl

Samples SVM Agent2

Result 2

-

Combiner Final Result

SVMAgentp [—™

Result p

Flgure2: Thestructureof multiagent ensemblelear ning system.

2 showsthestructure of themultiagent ensemblelearn-
ing system, where p isthe number of learning agents.
From the previousdescriptionsand Flgure 2, itis
easy to find that how to construct the combiner, and
how to create diversity among the multiple agents, are
thetwo main factorsin building an effectivemultiagent
ensemblelearning system. Because the previous sec-
tions have introduced some diverse SVM agents by
using different diversity strategies, how to construct an
efficient combiner hasbeen akey factor in constructing
an effective multiagent ensemblelearning system.
However, beforeintegrating these SVM agents,
drategiesfor sdecting SVM agentsmust benoted. Gen-
erally, these strategies can bedivided into two catego-
ries; \ sproducing an exact number of SVM learning
agents, and a$overproducing SVM learning agentsand
then selecting a subset of these overproduced SVM

the second strategy isnot preferred isbecauseit can-
not avoid occupying large amounts of computing time
and storage spacewhile creating alargenumber of en-
sembl e agent candidates, someof which areto belater
discarded.

Generally, there are some ensembl e strategiesto
takeinto account different resultsintheexisting litera-
tures. Typically, mgority voting and weighted averag-
ing aretwo popular ensemble

strategies. The main objective of mgjority voting
strategy isto determinethe vote of the majority of the
population of learning agents. To our knowledge, ma-
jority voting isone of the most widely used ensemble
srategiesdueto itseasy implementation. Inthemgjor-
ity voting strategy, each agent hasthe sameweight and
thevoting of the ensemble agentswill determinethe
find result. Usudly;, it takesover haf theensembleagents
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to agreeinorder for aresult to be accepted asthefina
output of theensembl e, regardless of thediversity and
accuracy of each agent’s generalization. In the
mathematic form, theresult of thefina ensembleoutput
G(2) can berepresented as

G(z)=s‘gn(ki F.(2)/p)

wherezisatestingdatavectoras z={z,,z,,..,z,} de-
finedinEq.(3), F, (z) istheoutput result of thethlearning
agent presented in EQ. (4), using thetesting datavector
z,misthe number of testing datapointsand pisthe
number of learning agents. Although thisstrategy iseesy
to be used and implemented, aserious problem associ-
ated with magjority votingisthat it ignoresthefact that
somelearning agentsthat lieinaminority sometimes
produce the more accurate results. At the ensemble
stage, itignoresthe existence of diversity that isthe
motivation for amulti-agent ensemblelearning system.

Weighted averagingiswherethefina output result
iscadculatedintermsof sngleagents’ performance, and
aweight isattached to each singleagent’soutput. The
sum of thetotal weight isoneand each agentisentitled
to aportion of thistotal weight based on their perfor-
mance. A typical binary classification exampleistouse
validation examples to determine the performance
weight. Supposethat represents the number of ob-
sarved Class ingancesthat aremistakenly classified as
Class B by an agent, AA denotes the number of cor-
rectly classified Class A instancesthat belong to Class
A; AB representsthe number of observed ClassBin-
stancesthat aremistakenly classified asClass A, while
BB representsthe number of correctly classified Class
B instances that belong to Class B. Some common
measuresused to eva uatethe performance of the agent
aredefined below:

BB
TypelA = ificit v =
ypel Accur acy = Specificit y 5B+ BA (6)
Typel |Accu racy = Sensitivit y = — 22 @)
P &= Y="AA +AB
AA +BB
TotalAccuracy(TA) = + ©
AA+AB+BB+BA

Each SVM agent istrained by atraining dataset
and isverified by thevaidation samples. Assumethat
thetotal accuracy of vaidation samplesof agent k is
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denoted by TA, , theweight of SVM agent i denoted
by w, canbecalculated as

w, = TAx p
TA, ©)
k=1

Then thefinal ensemble output value G(2) of this
strategy isshown asfollows:

G(2)= s‘gn(kiwk F(2) 10)

where w, isthe g thweight fork th agent and other
symbolsareidentical to Eq. (5).

Theabove T A -based weight averaging ensemble
strategy isatypical classof ensemble strategy, the de-
termination of theweight isheavily dependant onthe
validation samples. When thereisno validation subset
indatadivison, thisensemblestrategy will beusaless.

DATA DESCRIPTIONAND
EXPERIMENT DESIGN

Inthissection, aBritish credit card application ap-
prova datasetisused. Itisfrom afinancid servicecom-
pany in England, obta ned from the accessory CDROM
of Thomas, Edelman, Crook. The dataset includesde-
tailed information of 1225 applicants, including 323
observed bad applicants. In the 1225 applicants, the
number of good cases (902) isnearly threetimesthat
of bad cases (323). To make the numbers of thetwo
classes near equal, wetriple the number of bad cases,
i.e. weadd two copiesof each bad case. Thusthetotal
dataset grows to 1871 cases. The purpose of doing
thisisto avoid having too many good cases or too few
bad casesin thetraining samples. Then werandomly
draw 1000 cases comprising 500 good cases and 500
bad casesfromthetotal of 1871 casesasthetraining
samplesand treat the rest astesting samples(i.e. 402
good applicantsand 469 bad gpplicants). Inthese cases,
each caseis characterized by 14 decision attributes,
which aredescribed asfollows:

(1) Year of birth.

(2) Number of children.

(3) Number of other dependents.
(4) Isthereahome phone.

(5) Applicant’sincome.
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(6) Applicant’semployment status.
(7) Spouse’sincome.

(8) Residentid status.

(9) Vvadueof home.

(10) Mortgage ba ance outstanding.
(11) Outgoingson mortgageor rent.
(12) Outgoingsonloans.

(13) Outgoingson hirepurchase.
(14) Outgoingson credit cards.

Using thisdataset and previous descriptions, we
can construct apractical SV M-based multiagent en-
semblelearning system for credit risk evaluation. The
bas ¢ purposeof themultiagent ensembl el earning model
istomakefull useof knowledgeandintelligenceof each
agentinthemultiagent ensemblelearning system. Inthis
multiagent ensemblelearning system, agentsare some
intelligent techniquesor intdl ligent agents.

Subsequently, inorder toinvestigatetheimpacts of
diversity strategy and ensemble strategy onthe perfor-
mance of amultiagent ensemblelearning system, we
perform different experimentswith diversediversity
strategies and ensembl e strategies. When testing the
effectsof diversity strategieson the performance of a
multiagent ensemblelearning system, theensemblestrat-
egy isassumedto befixed. Smilarly, thediversty strat-
egy will befixedif theimpacts of ensemble strategies
ontheperformanceof themultiagent ensemblelearning
system areevd uated.

Inthetesting of diversity Strategies, amgjority vot-
ing based ensembl e strategy is adopted. For datadi-
versity, abagging dgorithmisutilized. Inthispaper, we
usefivedifferent training scenariosfor SVM learning.
For example, weuse 500 training sets(i.e. P= 1871,
N = 1000, and m=500) to create 500 different evalu-
ationresultsfor eachintelligent agent. Inthiscase, the
SVM modd withaRBF kernd isused asanintel ligent
learning agent. The parametersof SVM including regu-
lation parameter and kernel parametersare determined
by agrid search.

For parameter diversity, weuse SVM mode swith
the RBF kernd asintelligent |earning agents. Accord-
ingly, theregulation parameter C and RBF kernel pa-
rameter r2 will be changed. Thetraining datausedis
theinitid training dataproduced by datapartition.

For kerndl diversity, threetypicd kerne functions,
polynomia function, RBF function and sigmoid func-

tion areused. Inthiscase, the parametersof SVM are
determined by agrid search. Thetrainingdatausedis
theinitia training dataproduced by datapartition.

Inthetesting of ensemble strategies, bagging-based
divergty strategy isused. Inthiscase, the SYM modds
with the RBF kernel are used asintelligent learning
agents. Theparametersof SVM aredetermined by a
grid search.

EXPERIMENTAL RESULTS

Using the previousexperiment design, threetypes
of different experimentswere conducted. Thefirst was
thedivergty strategy testing experiment, the second was
theensemblestrategy testing experiment, and thefinal
onewasthe performance comparison of different mod-
és.

Diversity strategy testing

Inthissubsection, threedifferent diversity strate-
gies, datadiversity, parameter diversity and kernel di-
versity, were used to investigate the impact on the
multiagent ensemblelearningmode in group decision
making.

Inthedatadiversity testing, themain goal wasto
examinetheimpact of the number of training samples
onthegenerdization performanceof themultiagent en-
semblelearning model. For this purpose, we adopted
the bagging algorithm to create 100, 500, 1000, 2000
and 5000 different training samples (5 different sce-
narios), asmentioned previoudy. Using thesedifferent
training samples, different SngleSVM mode swithdis-
smilaritieswereproduced. Withthetrained SVM mod-
els, someclassfication resultswereachieved. Usngthe
ma ority voting strategy, thefind multiagent ensemble

TABLE 1: Performance comparisons of SYM ensemble
lear ning with data diver sity.

Number of
training  Typel(%) Type Tota
11(%) accuracy(%)
samples
100 66.94[3.58] 63.45[3.93] 65.12[3.77]
500 69.38[3.23] 66.36[3.71] 67.82[3.52]
1000 73.44[2.81] 67.93[3.26] 70.54[3.03]
2000 73.97[2.76] 68.14[3.15]  70.91[2.87]
5000 73.65[2.73] 68.72[3.29] 71.06[2.85]
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resultswere obtained from the multiagent ensemble
learning system. Accordingly thefinal computational
resultsareshownin TABLE 1. Notethat thevauesin
bracketsare standard deviations.

Based ontheresultsin TABLE 1, two conclusions
can be easily drawn. On the one hand, asthe number
of training samplesincreases, the performanceimprove-
mentsareincreased from the perspective of total accu-
racy. On the other hand, the degree of performance
improvement from 100 datasets to 1000 datasetsis
larger than the degree of performance improvement
from 1000 datasetsto 5000 datasets, whichindicates
that the degree of performanceimprovementisnot fully
dependant on thenumber of training samples.

Inthe parameter diversity testing, the SYM models
with the RBF kernel are used asintelligent learning
agents. Therefore, different regulation parameters and
kernel parameters areusedto creatediversity. In par-
ticular, theregulation parameter variesfrom 10to 100
withastep szeof 10andthekernd parameter changes

from 10to 100 with astep size of 10. Some computa-
tiond resultsareshownin TABLE 2.

FromTABLE 2, we can observethat different pa
rameter settingscanlead to different generdization per-
formance, but thedifferencesareinsignificant. More
specifically, the classification performance on the test-
ing dataincreaseswhen Cincreasesfrom 10to 80, but
the classification performance decreaseswhen Cin-
creasesfrom 90to 100. Thusasuitableregulation pa
rameter isof utmost importanceto SVM learning. The
main reason isthat the regulation parameter Cisan
important trade-off parameter between margin maxi-
mization andtolerableclassfication errors. If the selec-
tion of regulation parameter Cisingppropriate, it might
lead to unexpected generdization results. But thesere-
sults partly support the conclusions of Kim (2003) &
Tay & Cao (2001). However, for kernel parameter r2,
itisdifficult tofind smilar results. The possiblereason
isworth exploring further in thefutureresearch.

Similarly, wecan a so usedifferent kernel functions

TABLE 2: Performance comparisonsof SVM ensemblelear ning with different parameters.

C 02 Type (%) Typell(%) Total accuracy(%)
10 10,20....,100 67.48[4.01] 63.75[3.54] 65.32[3.82]
20 10,20....,100 69.34[3.84] 64.89[3.78] 66.81[3.94]
30 10,20....,100 68.96[3.33] 65.05[3.66] 66.88[3.53]
40 10,20....,100 69.58[4.21] 64.98[4.08] 67.14[4.14]
50 10,20,...,100 70.24[3.57] 65.46[4.14] 67.51[3.88]
60 10,20,...,100 69.87[4.01] 66.63[4.26] 68.22[4.12)]
70 10,20,...,100 71.32[3.82] 67.89[4.01] 69.44[3.96]
80 10,20,...,100 70.45[3.51] 69.34(3.83] 69.53[3.73]
Q0 10,20,...,100 70.08[4.14] 69.08[4.54] 69.39[4.31]
100 10,20,...,100 69.87[4.76] 67.85[5.04] 68.57[4.89]
10,20,...,100 10 69.65[4.25] 67.42[3.96] 68.93[4.15]
10,20,...,100 20 71.93[3.92] 66.38[4.33] 68.67[4.18]
10,20,...,100 30 68.02[4.61] 66.42[3.89] 67.14[4.27]
10,20,...,100 40 69.98[4.83] 67.02[4.22] 68.49[4.54]
10,20,...,100 50 68.69[3.95] 64.87[4.45] 66.78[4.29]
10,20,...,100 60 69.65[3.32] 66.22[3.86] 67.54[3.66]
10,20,...,100 70 67.43[4.47] 66.38[3.92] 66.76[4.23]
10,20,...,100 80 68.52[4.81] 65.15[3.74] 66.82[4.43]
10,20,...,100 90 66.49[4.09] 65.41[4.45] 65.78[6.09]
10,20,...,100 100 67.56[3.85] 66.24[4.08] 66.78[3.97]
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to createamultiagent SVM ensemblelearning system
for credit risk evauation. For thispurpose, threedif-
ferent kernel functions: polynomia function, sigmoid
function and RBF function are used for testing. In or-
der to construct adiverse ensemblelearning system,
1000 copies of the same training dataset are repli-
cated. Inthe 1000 training data points, different ker-
nel functions are hybridized to createthekernel di-
versity. Notethat in every experiment only onekernel
function dominates the multiagent ensemblelearning
system. Detailed configuration of the kernel functions
and corresponding computational results are shown
inTABLE 3.

————, FyurL PAPER

FromTABLE 3, severd interesting results should
benoted. First of all, themultiagent ensemblelearn-
ing system dominated by the RBF-type kernel func-
tion producesthebest classification results, followed
by the sigmoid kerndl and the polynomia kernel. Sec-
ond, intermsof thetotal accuracy, thereisasignifi-
cant difference at the 10% level inthetwo-tail t-test
between RBF kernel function and polynomia kernel
function. Third, although the multiagent ensemble
learning system dominated by the RBF kernel isad-
vantageous to the ensembl e learning system domi-
nated by the sigmoid kernel, the robustness of the
former isslightly worsethan that of the latter (deter-

TABLE 3: Performance comparisonsof SVM ensemblelear ning with ker nel diver sity.

No. Kernel functions Type (%) Type (%) Total accuracy(%)
1 600Pol y+200Si g+200RBF 64.76[4.76] 61.89[5.05] 63.25[4.94]
2 200Pol y+600Si g+200RBF 68.14[4.28] 65.51[4.69] 66.68[4.55]
3 200Pol y+200Sig+600RBF 71.32[4.93] 68.13[4.71] 68.59[4.87]
mined from the standard deviation measure). The
possible reason for thisisunknown, and worth ex- ACKNOWLEDGEMENTS

ploringfurther.
CONCLUSIONS

Inthispaper, amulti-stage SV M-based multi-agent
ensemblelearning system was proposed for credit risk
eval uation problems. For the purposes of verification,
onepublicly available credit dataset wasused in order
to test effectiveness and classification power. In par-
ticular, multipledifferent experimentswere conducted
to test theimpact of various diversity strategies and
ensembl e strategies on the performance of aSVM-
based ensemblelearning system. All resultsreportedin
the experimentsclearly show that the proposed SV M-
basad multi-agent ensembl el earning approach can con-
sistently outperform the other comparablemodels, in-
cludingtheother

two ensemblelearning modelsand thefivesingle
agent learning systems. The obtained resultsreved that
the proposed SV M -based multi-agent ensemblelearn-
ing model can provideapromising solution to credit
risk eval uation problem and impliesthat the proposed
SVM-based multi-agent ensemblelearning technique
hasagreat potential initsapplication to other classifi-
cation problems.
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