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ABSTRACT

Electron�phonon effects on Stark shifts of bound polarons in quantum dot quantum well nanostructures are

studied theoretically by using a variational approach. The binding energy of the hydrogenic impurity state is
calculated by taking the interaction of an electron with both the longitudinal optical phonons and the surface
optical phonons into account. The interaction between impurity and longitudinal optical phonons has also
been considered to obtain the binding energy of bound polarons. The numerical results for a CdS/HgS
quantum dot quantum well nanostructure show that the Stark shift obviously increases as the core radius
increases with the outer radius of spherical shell fixed and the electron�phonon effects give significant

corrections to the binding energy.  2010 Trade Science Inc. - INDIA

INTRODUCTION

During the past few years, there has been consid-
erable interest in investigating quantum dots (QD) both
experimentally and theoretically[1-8]. Since 1993, a new
kind of QD structure, called quantum dot quantum well
(QDQW) nanostructure, has been fabricated and stud-
ied[9-17]. The semiconductor materials usually used to
synthesize QDQW nanostructures are CdS/HgS, ZnSe/
CdSe, CdS/PbS, etc. The material with a smaller bulk
band gap(shell material, such as HgS) is embedded
between a core with a larger bulk band gap(core ma-
terial, such as CdS) and a nonpolar medium(such as
water), so the material with the smaller bulk band gap
acts as a shell material for the electron and hole as well
as the phonon in the polar crystal. The QDQW
nanostructures display quite interesting physical prop-
erties and appear to have promising perspectives in the

streaming progress of nanostructured device technol-
ogy.

The electron-phonon interaction plays an impor-
tant role in determining the physical properties of
QDQW nanostructures. A previous work[13] studied the
electron-phonon interaction in a QDQW nanostructure
and calculated the ground state and excited state elec-
tron energy levels using the dielectric continuum ap-
proach. Interesting results concerning the dependence
of polaronic corrections with the QDQW nanostructure
size are analyzed. Schrier et al.[14] considered the elec-
tronic nanostructures of CdS/CdSe/CdS QDQWs by
large-scale pseudopotential local density approxima-
tion. Their calculation found that the wave functions,
eigenvalues, Coulomb interaction, and exciton energy
change according to the sizes of the core, well, and
shell. The authors have recently derived the electron-
phonon interaction Hamiltonian for QDQW
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nanostructures and calculated the binding energy and
the trapping energy of the bound polarons in CdS/HgS
QDQW nanostructures[17].

The application of an external electric field in the
low-dimensional quantum system, induces both a po-
larization of the carrier distribution and an energy shift
of the quantum states. This property has significant ef-
fect on optoelectronic devices. The quantum-confined
Stark effects have been extensively investigated for both
QWs[18-20], and QDs[21-26]. Huangfu et al.[24] studied the
bound polaron in a spherical quantum dot structure un-
der an electric field. They calculated the binding energy
of the hydrogenic impurity state and found that the po-
laron effects give significant corrections to the binding
energy and its Stark shift. However, up to now, only a
few authors have investigated the polaron problem in
QDQW nanostructures and the electron-phonon ef-
fects on Stark shifts for QDQW nanostructures have
rarely been studied.

In this paper, electron�phonon effects on Stark

shifts of bound polarons in QDQW nanostructures are
studied theoretically by using a variational approach.
The binding energy of the hydrogenic impurity state is
calculated by taking the interaction of an electron with
both the bulk longitudinal optical phonons and the sur-
face optical phonons into account. The exchange inter-
action between impurity states and longitudinal optical
phonons has also been considered to obtain the bind-
ing energy of the bound polaron. The numerical calcu-
lations for CdS/HgS QDQW nanostructure embedded
in water have been carried out. The results reveal that
the electron�phonon effects give significant corrections

to the Stark shift. Electron-phonon contribution to the
binding energy decreases significantly with increasing
the electric-field strength. It is also found that the bind-
ing energy increase as the core radius of the QDQW
nanostructure decreases while the outer radius of the
shell is fixed.

THEORY

We consider an electron confined in the well of a
QDQW nanostructure, completely interacting with the
positively charged centre and the phonons in an exter-
nal electric field along the z-direction. The Hamiltonian
of the system is given as

H = H
e
 + H

ph
 + H

x
 + H + H (1)

The first term in Eq.(1) is the Hamiltonian of the
electron in a �vacant�(without phonons) QDQW

nanostructure and can be described as,
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where m
b
 and e are the electron effective mass and

charge, and 

 is the high-frequency dielectric constant

of the shell material. r is the distance between the elec-
tron and the impurity site. F is the electric field intensity
and  is the angle between the position vector and the
electric field. V(r) is the confining potential of the
QDQW nanostructure and is given by
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where R
1
 and R

2
 are the radii of the spherical core and

spherical shell.
The second term in Eq. (1) is the phonon Hamilto-

nian
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is the corresponding operator for SO phonons with fre-
quency 

l
  and  = 1,2 and 3 refer to the nth branch of

the SO modes, which are given in Ref.[17].
The last three terms in Eq. (1) describe the interac-

tion Hamiltonian, reflecting the fact that both the impu-
rity and the electron interact with phonons and can be
written as[17],
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where j
l
(x) and n

l
(x) are the spherical Bessel function

and spherical Neumann function of order l (l = 0, 1, 2,
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3�). Y
lm

(,) are the spherical harmonic functions with
m = 0,  1, �., l. The constants k

nl
 are chosen so

that g
nl
(k

nl
R

2
) = 0. If x

n
 is the nth zero of equation g

1
(x)

= 0, then k
nl
 = x

n
/R
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The electron-phonon coupling coefficients are given
by
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where N
nl
 and N

S
 are the normalization constants of

eigenfunctions of longitudinal optical phonons and the
surface optical phonons, respectively.

Within the adiabatic approximation, the effect of
the electron-phonon interaction is to displace the equi-
librium positions of the ions. This can be achieved by
performing a canonical transformations corresponding
to the bulk and the surface modes.
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where the parameters f
nlm

 and f
lm

 will be variationally
determined later. The total wave function of the system
is given by the product
 = U0 (13)

where 0 is the zero-phonon state, and  is an elec-
tronic wave function.

In order to describe the electronic ground state by
means of variational technique, we chose the trial wave
function as follows.
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where N is the normalization constant,  and  are

variational parameters, and 
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  is obtained

from the boundary condition (R
2
) = 0. After some

calculations we obtain the total energy of the system
E = E

k
 + E

p
 + E

I
(15)

The first term in Eq. (15) is kinetic energy of the
electron, and
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The second term in Eq. (15) is the potential energy
given by
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The last term in Eq. (15) is the electron-phonon
interaction energy given by
E

I
 = 0U-1(H

ph
 + H + H)U0 (21)

Solving the minimum equation E
I
/f

nlm
 = 0 and

E
I
/f

lm
 = 0, one can obtain the parameters f

nlm
 and

f
lm

 as follows,

LO

nlmL
nlmnlm

F
Vf





(22a)









l

lmS
lmlm

F
Vf


(22b)



Z.P.Wang et al. 99

Full Paper
NSNTAIJ, 4(2) 2010

Nano Science and Nano Technology

An Indian Journal

with
F

nlm
 = g

l
(k
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r)Y
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() (23a)

F
lm

 = (A
l
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l
r-l-1)Y

lm
() (23b)

Substituting Eqs. (4), (6), (7), (22), (23) into Eq.
(21), we have
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The binding energy of the bound polaron can be
defined by
E

b
 = E

free
 - E (25)

The corresponding Hamiltonian for a free polaron
is written as

 coseFr"H'HH)r(V
m2
p

H ph
b

2

free (26)

We choose the trial wave function
 = U0 (27)

with the trial wave function for the electron
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where  is variational parameter. The ground-state en-
ergy of the free polaron can be obtained by a varia-
tional procedure.
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NUMERICAL RESULTS AND DISCUSSION

The binding energies of bound polarons in the CdS/
HgS QDQW nanostructure with an applied electric
field have been computed numerically by the varia-
tional approach and the results are illustrated in figure
1-4. The material parameters used in the calculation
are listed in TABLE 1.

nanostructure with the outer radius of spherical shell
R

2
=15nm at the electric field F =5106V/m is plotted

in figure 1. It is clearly seen that the binding energy of a
bound polaron decreases when the core radius in-
creases. This is due to the fact that the well-width is
reduced with the increasing core radius when the outer
radius of spherical shell is fixed.

To clearly understand the influences of the electron
field on the binding energy of bound polaron, we have
also plotted the curves of the binding energy of a bound
polaron as functions of the electric field in the CdS/
HgS QDQW nanostructure for outer radii of spherical
shells R

2
=7nm and 15nm in figure 2, respectively. It is

found that the binding energy of a bound polaron de-
creases monotonously with increasing the electric-field
intensity. The Stark shifts are considerably enhanced

TABLE 1 : Values of the physical parameters used in the
computations[17]. Energies are measured in meV and masses
in the electron rest mass

Materials mb  LO  TO 0  d 

CdS 0.2 57.2 44.5 9.1 5.5  

HgS 0.036 27.8 22.0 18.2 11.36  

H2O 1     1.78 

The binding energy of bound polaron as a function
of the spherical core radius in CdS/HgS QDQW

Figure 2 :  Binding energies of a bound polaron with the
spherical core radius R

1
=3.5nm as functions of the electric

field in the CdS/HgS QDQW nanostructure for the outer
radii of spherical shells R

2
=7nm and 15nm, respectively

Figure 1 : Binding energy of a bound polaron as a function of
the spherical core radius R

1 
in the CdS/HgS QDQW

nanostructure with the outer radius of spherical shell
R

2
=15nm at the electric field F=5106V/m
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when the outer radius of spherical shell becomes larger.
For example, the binding energies are reduced by 25.3%
for the outer radius of spherical shell R

2
 =15nm, but

only 1.2% for R
2
=7nm, as an electric field of F = 20106

V/m is supplied.
Figures 3 and 4 illustrate the Stark shifts and con-

tribution of the electron-phonon interaction to the bind-
ing energies of a bound polaron as functions of the core
radius in the CdS/HgS QDQW nanostructure with the
outer radius of spherical shell fixed at 15nm, respec-
tively. It is shown that Stark shift obviously increases
with increasing core radius. The contribution of the elec-
tron-phonon interaction to the binding energies de-
creases with increasing core radius and the polaron ef-
fect is un-negligible.

CONCLUSIONS

In conclusion, we have studied theoretically the
electron�phonon effects on Stark shifts of bound po-

larons in the quantum dot quantum well nanostructure
by using a variational approach. The binding energy of
the hydrogenic impurity state is calculated by taking the
interaction of an electron with both the longitudinal op-
tical phonons and the surface optical phonons into ac-
count. The interaction between impurity and longitudi-
nal optical phonons has also been considered to obtain
the binding energy of bound polarons. The numerical
results for a CdS/HgS quantum dot quantum well
nanostructure show that the binding energy of the bound
polaron decrease monotonously with increasing core
radius and the electric-field intensity, respectively. Stark
shift obviously increases with increasing core radius,
while the contribution of the electron-phonon interac-
tion to the binding energies decreases with increasing
core radius, and the polaron effect is un-negligible.
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