ELECTRONIC STATE PROPERTIES: BOND LENGTH AND BOND ANGLE OF PHENOL AND ITS SOME DERIVATIVES

ALOK SHUKLA ${ }^{*}$, RAJENDRA PRASAD TEWARI and
K. D. P. SHUKLA

Department of Physics, Maharani Lal Kunwari Post Graduate College, BALRAMPUR - 271201 (U.P.) INDIA

Abstract

We have studied bond length and bond angle of a series of phenols. For present study the molecular modelling and geometry optimization of all the compounds were carried out with MOPAC software using MINDO/3 methods. We have conclude that the order of bond lengths between C-O, C-C, $\mathrm{C}-\mathrm{H}$ and $\mathrm{O}-\mathrm{H}$ atoms have been changed by changing the position of the substituents i.e., from ortho to para substitution. The C-C-C band angles have the same value while the $\mathrm{C}-\mathrm{C}-\mathrm{O}$ and $\mathrm{C}-\mathrm{O}-\mathrm{H}$ band angles differ from their normal values on substitution.

Key words: Phenol, MINDO/3, MOPAC, Electronic state properties.

INTRODUCTION

Computational chemistry have been introduced the methods of analysis of reaction mechanisms and prediction of the reactivity in synthetic chemistry. Therefore, computational chemistry is used to predict the reactivates of a wide variety of chemicals ${ }^{1-4}$. In this work, we have selected few derivatives of phenol for such study. MINDO/3 methods were used to study the effects of substitution of phenols ${ }^{5,6}$. The electronic structure of molecules is to explain the nature of classical chemical bond in terms of quantum chemical parameters by molecular orbital theory ${ }^{7}$. The bond length and bond angle are important characteristics of covalent bonding in molecules. The concept of bond length and bond angle permits us to get an immediate insight into the bonding situation in different molecules. In general, these parameters may be useful in correlating the quantum mechanics and ordinary chemistry and also useful in giving better results and getting deeper understanding of the results of the actual quantum chemical calculation for particular system.

[^0]
EXPERIMENTAL

The experimental materials of this paper are phenol and its few derivatives. For present study the molecular modeling and geometry optimization ${ }^{8}$ of all the compounds were carried out with MOPAC software using MINDO/3 methods 9 . The bond length and bond angle of every atom of the derivatives have been calculated by softness calculators.

RESULTS AND DISCUSSION

The bond length and bond angle of phenol and its derivatives by MINDO/3 method which is presented in Table 1 below.

Table 1: Bond length and bond angles of phenol and its derivatives

Molecule	Bond	Bond length (A^{0})	Bond	Bond angle (degree)
	$\mathrm{C}_{1}-\mathrm{C}_{2}$	1.403	$\mathrm{C}_{1}-\mathrm{C}_{2}-\mathrm{C}_{3}$	118.53
	$\mathrm{C}_{2}-\mathrm{C}_{3}$	1.424	$\mathrm{C}_{2}-\mathrm{C}_{3}-\mathrm{C}_{4}$	120.22
	$\mathrm{C}_{3}-\mathrm{C}_{4}$	1.418	$\mathrm{C}_{2}-\mathrm{C}_{3}-\mathrm{O}_{5}$	115.05
	$\mathrm{C}_{3}-\mathrm{O}_{5}$	1.427	$\mathrm{C}_{3}-\mathrm{C}_{4}-\mathrm{C}_{6}$	119.89
	$\mathrm{C}_{4}-\mathrm{C}_{6}$	1.407	$\mathrm{C}_{3}-\mathrm{C}_{4}-\mathrm{H}_{7}$	120.95
	$\mathrm{C}_{4}-\mathrm{H}_{7}$	1.105	$\mathrm{C}_{4}-\mathrm{C}_{6}-\mathrm{C}_{8}$	120.25
	$\mathrm{C}_{6}-\mathrm{C}_{8}$	1.405	$\mathrm{C}_{6}-\mathrm{C}_{8}-\mathrm{H}_{9}$	120.25
	$\mathrm{C}_{8}-\mathrm{H}_{9}$	1.103	$\mathrm{C}_{2}-\mathrm{C}_{1}-\mathrm{H}_{10}$	118.54
	$\mathrm{C}_{1}-\mathrm{H}_{10}$	1.107	$\mathrm{C}_{3}-\mathrm{C}_{2}-\mathrm{H}_{11}$	121.88
	$\mathrm{C}_{2}-\mathrm{H}_{11}$	1.104	$\mathrm{C}_{4}-\mathrm{C}_{6}-\mathrm{H}_{12}$	119.88
	$\mathrm{C}_{6}-\mathrm{H}_{12}$	1.106	$\mathrm{C}_{3}-\mathrm{O}_{5}-\mathrm{H}_{13}$	114.00
phenol	$\mathrm{O}_{5}-\mathrm{H}_{13}$	0.951		
	$\mathrm{H}_{7}-\mathrm{C}_{14}$	1.011		
	$\mathrm{C}_{1}-\mathrm{C}_{2}$	1.398	$\mathrm{C}_{1}-\mathrm{C}_{2}-\mathrm{C}_{3}$	119.43
	$\mathrm{C}_{2}-\mathrm{C}_{3}$	1.425	$\mathrm{C}_{2}-\mathrm{C}_{3}-\mathrm{C}_{4}$	123.22
	$\mathrm{C}_{3}-\mathrm{C}_{4}$	1.440	$\mathrm{C}_{2}-\mathrm{C}_{3}-\mathrm{O}_{5}$	121.83
	$\mathrm{C}_{3}-\mathrm{O}_{5}$	1.324	$\mathrm{C}_{3}-\mathrm{C}_{4}-\mathrm{C}_{6}$	113.11
	$\mathrm{C}_{4}-\mathrm{C}_{6}$	1.430	$\mathrm{C}_{3}-\mathrm{C}_{4}-\mathrm{C}_{7}$	127.76
	$\mathrm{C}_{4}-\mathrm{C}_{7}$	1.480	$\mathrm{C}_{4}-\mathrm{C}_{6}-\mathrm{C}_{8}$	124.87

Molecule	Bond	Bond length $\left(\mathrm{A}^{0}\right)$	Bond	Bond angle (degree)
	$\mathrm{C}_{6}-\mathrm{C}_{8}$	1.403	$\mathrm{C}_{4}-\mathrm{C}_{7}-\mathrm{C}_{9}$	139.72
	$\mathrm{C}_{7}-\mathrm{C}_{9}$	1.330	$\mathrm{C}_{3}-\mathrm{C}_{2}-\mathrm{H}_{10}$	120.89
	$\mathrm{C}_{2}-\mathrm{H}_{10}$	1.105	$\mathrm{C}_{2}-\mathrm{C}_{1}-\mathrm{H}_{11}$	120.04
	$\mathrm{C}_{1}-\mathrm{H}_{11}$	1.106	$\mathrm{C}_{4}-\mathrm{C}_{6}-\mathrm{H}_{12}$	117.62
	$\mathrm{C}_{6}-\mathrm{H}_{12}$	1.109	$\mathrm{C}_{6}-\mathrm{C}_{8}-\mathrm{H}_{13}$	120.40
	$\mathrm{C}_{8}-\mathrm{H}_{13}$	1.105	$\mathrm{C}_{3}-\mathrm{O}_{5}-\mathrm{H}_{14}$	114.30
	$\mathrm{O}_{5}-\mathrm{H}_{14}$	0.951	$\mathrm{C}_{4}-\mathrm{C}_{7}-\mathrm{H}_{15}$	101.80
	$\mathrm{C}_{7}-\mathrm{H}_{15}$	4.210	$\mathrm{C}_{4}-\mathrm{C}_{7}-\mathrm{H}_{16}$	109.80
	$\mathrm{C}_{7}-\mathrm{H}_{16}$	1.118	$\mathrm{C}_{7}-\mathrm{C}_{9}-\mathrm{H}_{17}$	128.06
	$\mathrm{C}_{9}-\mathrm{H}_{17}$	1.097	$\mathrm{C}_{7}-\mathrm{C}_{9}-\mathrm{H}_{18}$	126.49
o- ethyl phenol	$\mathrm{C}_{9}-\mathrm{H}_{18}$	3.330	$\mathrm{C}_{2}-\mathrm{C}_{3}-\mathrm{H}_{19}$	122.10
	$\mathrm{C}_{9}-\mathrm{H}_{19}$	1.100		
	$\mathrm{C}_{1}-\mathrm{C}_{2}$	1.502	$\mathrm{C}_{1}-\mathrm{C}_{2}-\mathrm{C}_{3}$	145.92
	$\mathrm{C}_{2}-\mathrm{C}_{3}$	1.478	$\mathrm{C}_{2}-\mathrm{C}_{3}-\mathrm{C}_{4}$	71.70
	$\mathrm{C}_{3}-\mathrm{C}_{4}$	1.308	$\mathrm{C}_{2}-\mathrm{C}_{3}-\mathrm{O}_{5}$	139.03
	$\mathrm{C}_{3}-\mathrm{O}_{5}$	1.301	$\mathrm{C}_{3}-\mathrm{C}_{4}-\mathrm{C}_{6}$	124.05
	$\mathrm{C}_{4}-\mathrm{C}_{6}$	2.835	$\mathrm{C}_{4}-\mathrm{C}_{6}-\mathrm{C}_{7}$	113.77
	$\mathrm{C}_{6}-\mathrm{H}_{7}$	1.335	$\mathrm{C}_{6}-\mathrm{C}_{7}-\mathrm{C}_{8}$	155.86
	$\mathrm{C}_{7}-\mathrm{C}_{8}$	1.449	$\mathrm{C}_{7}-\mathrm{C}_{8}-\mathrm{C}_{9}$	137.50
	$\mathrm{C}_{8}-\mathrm{C}_{9}$	1.328	$\mathrm{C}_{2}-\mathrm{C}_{1}-\mathrm{H}_{10}$	111.16
	$\mathrm{C}_{1}-\mathrm{H}_{10}$	1.126	$\mathrm{C}_{3}-\mathrm{C}_{2}-\mathrm{H}_{11}$	104.67
	$\mathrm{C}_{2}-\mathrm{H}_{11}$	1.134	$\mathrm{C}_{3}-\mathrm{C}_{4}-\mathrm{H}_{12}$	141.73
	$\mathrm{C}_{4}-\mathrm{H}_{12}$	1.134	$\mathrm{C}_{4}-\mathrm{C}_{6}-\mathrm{H}_{13}$	92.23
	$\mathrm{C}_{6}-\mathrm{H}_{13}$	1.091	$\mathrm{C}_{7}-\mathrm{C}_{8}-\mathrm{H}_{14}$	109.48
	$\mathrm{C}_{8}-\mathrm{H}_{14}$	1.115	$\mathrm{C}_{7}-\mathrm{C}_{8}-\mathrm{H}_{15}$	71.36
	$\mathrm{C}_{8}-\mathrm{H}_{15}$	2.278	$\mathrm{C}_{8}-\mathrm{C}_{9}-\mathrm{H}_{16}$	127.62
p- ethyl phenol	$\mathrm{C}_{9}-\mathrm{H}_{16}$	1.097	$\mathrm{C}_{8}-\mathrm{C}_{9}-\mathrm{H}_{17}$	122.63
	$\mathrm{C}_{9}-\mathrm{H}_{17}$	1.099	$\mathrm{C}_{8}-\mathrm{C}_{9}-\mathrm{H}_{18}$	86.89
	$\mathrm{C}_{9}-\mathrm{H}_{18}$	2.753	$\mathrm{C}_{3}-\mathrm{O}_{5}-\mathrm{H}_{19}$	115.61
	$\mathrm{O}_{5}-\mathrm{H}_{19}$	0.953		

Cont...

Molecule	Bond	Bond length $\left(\mathrm{A}^{0}\right)$	Bond	Bond angle (degree)
	$\mathrm{C}_{1}-\mathrm{C}_{2}$	1.371	$\mathrm{C}_{1}-\mathrm{C}_{2}-\mathrm{C}_{3}$	120.00
	$\mathrm{C}_{2}-\mathrm{C}_{3}$	1.460	$\mathrm{C}_{2}-\mathrm{C}_{3}-\mathrm{C}_{4}$	121.15
	$\mathrm{C}_{3}-\mathrm{C}_{4}$	1.350	$\mathrm{C}_{3}-\mathrm{C}_{4}-\mathrm{C}_{5}$	122.68
	$\mathrm{C}_{4}-\mathrm{C}_{5}$	1.493	$\mathrm{C}_{4}-\mathrm{C}_{5}-\mathrm{C}_{6}$	117.37
	$\mathrm{C}_{5}-\mathrm{C}_{6}$	1.528	$\mathrm{C}_{5}-\mathrm{C}_{6}-\mathrm{C}_{7}$	122.58
	$\mathrm{C}_{6}-\mathrm{C}_{7}$	1.363	$\mathrm{C}_{6}-\mathrm{C}_{7}-\mathrm{O}_{8}$	131.04
	$\mathrm{C}_{7}-\mathrm{O}_{8}$	1.311	$\mathrm{C}_{2}-\mathrm{C}_{1}-\mathrm{O}_{9}$	124.58
	$\mathrm{C}_{1}-\mathrm{O}_{9}$	1.326	$\mathrm{C}_{3}-\mathrm{C}_{2}-\mathrm{H}_{10}$	117.83
	$\mathrm{C}_{2}-\mathrm{H}_{10}$	1.103	$\mathrm{C}_{2}-\mathrm{C}_{3}-\mathrm{H}_{11}$	117.16
	$\mathrm{C}_{3}-\mathrm{H}_{11}$	1.106	$\mathrm{C}_{3}-\mathrm{C}_{4}-\mathrm{H}_{12}$	121.65
	$\mathrm{C}_{4}-\mathrm{H}_{12}$	1.105	$\mathrm{C}_{4}-\mathrm{C}_{5}-\mathrm{H}_{13}$	108.31
	$\mathrm{C}_{5}-\mathrm{H}_{13}$	1.126	$\mathrm{C}_{1}-\mathrm{O}_{9}-\mathrm{H}_{14}$	113.94
	$\mathrm{O}_{9}-\mathrm{H}_{14}$	0.952	$\mathrm{C}_{6}-\mathrm{C}_{7}-\mathrm{H}_{15}$	50.74
o- hydroxyl benzyl alcohol	$\mathrm{C}_{7}-\mathrm{H}_{15}$	2.775	$\mathrm{C}_{6}-\mathrm{C}_{7}-\mathrm{H}_{16}$	124.64
	$\mathrm{C}_{7}-\mathrm{H}_{16}$	1.118	$\mathrm{C}_{7}-\mathrm{O}_{8}-\mathrm{H}_{17}$	115.68
	$\mathrm{O}_{8}-\mathrm{H}_{17}$	0.952		
	$\mathrm{C}_{1}-\mathrm{C}_{2}$	1.402	$\mathrm{C}_{1}-\mathrm{C}_{2}-\mathrm{C}_{3}$	118.68
	$\mathrm{C}_{2}-\mathrm{C}_{3}$	1.421	$\mathrm{C}_{2}-\mathrm{C}_{3}-\mathrm{C}_{4}$	119.51
	$\mathrm{C}_{3}-\mathrm{C}_{4}$	1.419	$\mathrm{C}_{2}-\mathrm{C}_{3}-\mathrm{O}_{5}$	115.52
	$\mathrm{C}_{3}-\mathrm{O}_{5}$	1.324	$\mathrm{C}_{3}-\mathrm{C}_{4}-\mathrm{C}_{7}$	119.65
(3)	$\mathrm{C}_{4}-\mathrm{C}_{6}$	1.403	$\mathrm{C}_{4}-\mathrm{C}_{6}-\mathrm{C}_{7}$	123.24
E. 0	$\mathrm{C}_{6}-\mathrm{C}_{7}$	1.427	$\mathrm{C}_{7}-\mathrm{C}_{8}-\mathrm{O}_{9}$	122.70
	$\mathrm{C}_{7}-\mathrm{C}_{8}$	1.507	$\mathrm{C}_{2}-\mathrm{C}_{1}-\mathrm{H}_{10}$	114.87
1	$\mathrm{C}_{8}-\mathrm{O}_{9}$	1.354	$\mathrm{C}_{2}-\mathrm{C}_{1}-\mathrm{H}_{11}$	116.91
	$\mathrm{C}_{1}-\mathrm{H}_{10}$	1.108	$\mathrm{C}_{3}-\mathrm{C}_{2}-\mathrm{H}_{11}$	122.14
	$\mathrm{C}_{2}-\mathrm{H}_{11}$	1.104	$\mathrm{C}_{3}-\mathrm{C}_{4}-\mathrm{H}_{12}$	121.24
	$\mathrm{C}_{4}-\mathrm{H}_{12}$	1.105	$\mathrm{C}_{4}-\mathrm{C}_{6}-\mathrm{H}_{13}$	117.25
	$\mathrm{C}_{6}-\mathrm{H}_{13}$	1.108	$\mathrm{C}_{3}-\mathrm{O}_{5}-\mathrm{H}_{14}$	114.21
	$\mathrm{O}_{5}-\mathrm{H}_{14}$	0.951	$\mathrm{C}_{7}-\mathrm{C}_{8}-\mathrm{H}_{15}$	110.13
p- hydroxyl benzyl alcohol	$\mathrm{C}_{8}-\mathrm{H}_{15}$	1.133	$\mathrm{C}_{7}-\mathrm{C}_{8}-\mathrm{H}_{16}$	111.19
	$\mathrm{C}_{8}-\mathrm{H}_{16}$	1.130	$\mathrm{C}_{8}-\mathrm{C}_{9}-\mathrm{H}_{17}$	111.72
	$\mathrm{O}_{9}-\mathrm{H}_{17}$	0.951		

Cont...

Cont...

| Molecule | Bond $^{\text {Bond length }}$ |
| :---: | :--- | :---: | :---: | :---: |
| (A) | |

The bond length and bond angle of phenol and its derivatives are described separately as below -

Bond length

In a pioneering work, introduced a bond order parameter and correlated it with bond length for π-electron and all valence electron semi- empirical theories ${ }^{10-15}$. Ban border is a measure of net number of bonding electron pair. According to MO theory, a covalent bond between two atoms is formed by overlap of their atomic orbital. During overlapping, when the force of attraction between the two atoms is balanced by the force of repulsion between the nuclei of two atoms, the equilibrium distance between the two atomic nuclei is called bond length ${ }^{16}$. We have calculated the bond length of phenol and its derivatives by MINDO/ 3 method which is presented in Table 1. In phenol the bond length between $\mathrm{C}_{2}-\mathrm{C}_{3}$ is $1.4236 \AA$ which is maximum it means the electronegativity difference between these atoms will be minimum. The bond length between atoms in phenol has been found in following order:

$$
\mathrm{C}-\mathrm{O}>\mathrm{C}-\mathrm{C}>\mathrm{C}-\mathrm{H}>\mathrm{O}-\mathrm{H}
$$

The maximum bond length is found between $\mathrm{C}-\mathrm{O}$ while minimum bond length is found between $\mathrm{O}-\mathrm{H}$. Since bond length between $\mathrm{O}-\mathrm{H}$ is minimum therefore the electronegativity difference between $\mathrm{O}-\mathrm{H}$ maximum. It is also found that the presence of OH group at C_{3} in phenol, increases the bond length between $\mathrm{C}_{2}-\mathrm{C}_{3}$ is maximum. The bond length between $\mathrm{C}_{1}-\mathrm{C}_{2}$ and $\mathrm{C}_{4}-\mathrm{C}_{6}$ is just nearly equal. Similarly the bond length between $\mathrm{C}_{2}-$ C_{3} and $\mathrm{C}_{3}-\mathrm{C}_{4}$ are approximately equal in phenol. In ortho and para ethyl phenol the bond length between different atoms are found in following order:

$$
\mathrm{C}-\mathrm{H}>\mathrm{C}-\mathrm{C}>\mathrm{C}-\mathrm{O}>\mathrm{O}-\mathrm{H}
$$

An interesting feature is found that the bond length of $\mathrm{C}_{7}-\mathrm{H}_{16}$ and $\mathrm{C}_{9}-\mathrm{H}-18$ are found maximum because $\mathrm{CH}_{2}, \mathrm{CH}_{3}$ group are attached at C_{2} and C_{9} respectively. Hence electronegativity difference between $\mathrm{C}-\mathrm{H}$ will be least while electronegativity difference between O-H will be highest. In o-hydroxyl benzyl alcohol and p-hydroxyl benzyl alcohol. The bond length is found in following order:

$$
\mathrm{C}-\mathrm{C}>\mathrm{C}-\mathrm{O}>\mathrm{C}-\mathrm{H}>\mathrm{O}-\mathrm{H}
$$

In p-hydroxyl azobenzene, N group is attached. The bond length of $\mathrm{C}_{3}-\mathrm{C}_{4}$ is maximum and the bond length between $\mathrm{O}-\mathrm{H}$ is minimum. In p-hydroxyl azobenzene the bond length between $\mathrm{C}_{1}-\mathrm{C}_{2}, \mathrm{C}_{2}-\mathrm{C}_{3}, \mathrm{C}_{4}-\mathrm{N}_{6}, \mathrm{C}_{5}-\mathrm{C}_{7}$ and $\mathrm{C}_{10}-\mathrm{C}_{12}$ are nearly equal. In phenol and
its derivatives o-ethyl phenol, p-ethyl phenol, o-hydroxyl benzyl alcohol, p-hydroxyl benzyl alcohol, p-hydroxyl azobenzene, o-isopropyl phenol and p-isopropyl phenol, the bond length between C atom containing OH group and other C atom will be higher in comparison to the bond length between other $\mathrm{C}-\mathrm{C}$ atoms, i.e., presence of OH group increases the bond length. The bond length between C-O is less than the bond length between $\mathrm{C}-\mathrm{N}$ in p hydroxyl azobenzene because the bond orders between $\mathrm{C}=\mathrm{O}$ is greater than that of $\mathrm{C}-\mathrm{N}$. Hence if bond order increases than bond length decreases. It is also seen that the bond length between hydrogen and ring carbon atoms are found smaller than the bond length between hydrogen and carbon atom of substituent group.

Bond Angel

Bond angle ${ }^{17}$ is the internal angle between the orbitals containing electron pairs in the valence shell of the central atom in a covalent molecule. Bond angles give an idea of distribution of the orbitals in three dimensional spaces around the central atom in the molecule and thus give an idea of the shape of the molecule. Bond angle will be the maximum in case if central atom has no lone pair i.e. with the decrease in magnitude of bond pair - bond pair repulsion as well as with decrease of electronegativity. Bond angle of phenol and some of its derivatives have been calculated by MINDO/3 method and presented in Table 1. In phenol, the bond angle among $\mathrm{C}_{2}-\mathrm{C}_{3}-\mathrm{C}_{4}$ is exactly equal to the bond angle among $\mathrm{C}_{4}-\mathrm{C}_{5}-\mathrm{C}_{6}$ due to bond pair - bond pair repulsion being same. The bond angle among $\mathrm{C}_{2}-\mathrm{C}_{3}-\mathrm{O}_{5}$ is founder greater than the bond angle $\mathrm{C}_{3}-\mathrm{O}_{5}-\mathrm{H}_{13}$, which shows that bond pair - bond pair repulsion in $\mathrm{C}_{2}-\mathrm{C}_{3}-\mathrm{O}_{5}$ is greater than the bond pair - bond pair repulsion in $\mathrm{C}_{3}-\mathrm{O}_{5}-\mathrm{H}_{13}$. In phenol, the bond angles between different bonds are found in the following order:

$$
\mathrm{C}-\mathrm{C}-\mathrm{H}>\mathrm{C}-\mathrm{C}-\mathrm{C}>\mathrm{C}-\mathrm{O}-\mathrm{H}
$$

The $\mathrm{C}_{3}-\mathrm{C}_{2}-\mathrm{H}_{11}$ bond angle is about 121.88^{0} while the $\mathrm{C}_{3}-\mathrm{O}_{5}-\mathrm{H}_{13}$ bond angle is about 114^{0}. This is due to presence of OH group at the C_{3} that decreases its bond angle in side the ring. In other products of phenol the maximum bond length is formed between $\mathrm{C}_{7}-\mathrm{C}_{9}-\mathrm{H}_{17}$ but the OH group is attached with the C_{3} of first ring carbon therefore the $\mathrm{C}_{3}-\mathrm{C}_{4}-\mathrm{C}_{6}$ bond angel is minimum. The maximum bond angel is found about 139.72° while the minimum bond angle is found about 101.8^{0}. Similar trend is found in p - ethyl phenol and o- hydroxyl benzyl alcohol. In p - hydroxyl azobenzene bond angle $\mathrm{C}_{4}-\mathrm{N}_{6}-\mathrm{N}_{8}$ and $\mathrm{N}_{6}-\mathrm{N}_{8}-\mathrm{C}_{9}$ are found nearly equal. The $\mathrm{C}_{11}-\mathrm{O}_{5}-\mathrm{H}_{25}$ is found 113.72^{0} which is minimum. The CH_{3} group is attached to C_{9} and C_{10} in o- isopropyl phenol. The bond angle in $\mathrm{C}_{7}-\mathrm{C}_{9}-\mathrm{H}_{19}, \mathrm{C}_{9}-\mathrm{C}_{10}-\mathrm{H}_{20}$ and $\mathrm{C}_{7}-\mathrm{C}_{10}-\mathrm{H}_{21}$ are found minimum which shows that CH_{3} group decreases the bond angle.

CONCLUSION

From above study we have concluded that:
(i) The bond length between C atom containing OH group and other C atom will be higher in comparison to the bond length between other $\mathrm{C}-\mathrm{C}$ atoms.
(ii) The bond length between atoms in phenol has been found in the order: $\mathrm{C}-\mathrm{O}>\mathrm{C}-\mathrm{C}>$ $\mathrm{C}-\mathrm{H}>\mathrm{O}-\mathrm{H}$.
(iii) In ortho- and para-ethyl phenol the bond length between different atoms are found in the order: $\mathrm{C}-\mathrm{H}>\mathrm{C}-\mathrm{C}>\mathrm{C}-\mathrm{O}>\mathrm{O}-\mathrm{H}$.
(iv) In o-hydroxyl benzyl alcohol and p-hydroxyl benzyl alcohol. The bond length is found in the order: $\mathrm{C}-\mathrm{C}>\mathrm{C}-\mathrm{O}>\mathrm{C}-\mathrm{H}>\mathrm{O}-\mathrm{H}$.
(v) The bond length between hydrogen and ring carbon atoms is found smaller than the bond length between hydrogen and carbon atom of substituent group.
(vi) In phenol, the bond angles between different bonds are found in the order: C-C-H > $\mathrm{C}-\mathrm{C}-\mathrm{C}>\mathrm{C}-\mathrm{O}-\mathrm{H}$.

ACKNOWLEDGEMENT

This paper is abstracted from the Ph. D. thesis of the Alok Shukla.

REFERENCES

1. Ammar A. Ibrahim and Eid A. Abdalrazaq, American J. Appl. Sci., 6(7), 1385 (2009).
2. G. Astarola-Aierbe, J. M. Echeverria., J. L. Egiburu, M. Ormaetxea and L. Mondragon, Polymer, 39, 3147 (1998).
3. M. K. Krygowski and B. T. Stepien, Chem. Rev., 105, 3482 (2005).
4. H. Y. Zhang, Y. M. Sun and X. L. Wang, J. Org. Chem., 67, 2709 (2002).
5. R. Mauro, B. Lobato, J. Lameira, S. A. Santos and C. N. Alves, Eur. J. Med. Chem., 42, 440 (2007).
6. T. Brinck, M. Haeberlein and M. Jonsson, J. Am. Chem. Soc., 119, 4239 (1997).
7. J. A. Pople and D. L. Beveridge, Approximate Molecular Orbital theory, Mc Grath Hill Books Co., Inc., New York, 74, 9121970.
8. J. J. P. Stewart, I. J. Comp. Chem., 10, 209 (1989).
9. A. Svobodova, J. Psotova and D. Walterova, A Review. Biomed Papers, 147(2), 137 (2003).
10. E. Clementi, J. Chem. Physics, 46, 4731 (1967).
11. Pedro J. Silva, J. Org. Chem., 74 (2), 914 (2009).
12. O. P. Singh and J. S. Yadav, J. Chem. Sci., 95, 427 (1985).
13. L. S. Yadav, J. S. Yadav and D. K. Rai, J. Chem. Sci., 100, 315 (1988).
14. O. P. Singh, L. S. Yadav, P. N. S. Yadav and J. S. Yadav, J. Mol. Struct. (Theo. Chem.), 151, 227 (1987).
15. Corwin Hanscha, Susan C. McKarnsb, Carr J. Smith and David J. Doolittle, ChemicoBiological Interactions, 127(1), 61 (2000).
16. Y. D. Wu and D. K. W. Lai, J. Org. Chem., 61, 7904 (1996).
17. M. J. S. Dewar, E. G. Zoebisch, E. F. Healy and J. J. P. Stewart, J. Am. Chem. Soc., 107, 3902 (1985).

[^0]: *Author for correspondence; E-mail: dr_gayasuddinkhan@rediffmail.com

