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Abstract 

In this paper, a quantum particle is conceived as a packet of waves with invariant time-dependent phases for any change of 

coordinates. In this framework, we obtain the relativistic kinematics and dynamics, and the spin as a characteristic of the particle 

dynamics. When a field is considered in interaction with a quantum particle, the Lorentz force, and the Maxwell equations are 

obtained. For a quantum particle in a central gravitational field, we obtain the Newtonian acceleration with a correction specific to 

the Schwarzschild solution, which describes an increase of the gravitational field in the proximity of the gravitational center. We 

essentially show that a quantum particle is described by a distribution of conservative matter, moving according to the general 

theory of relativity. 

Keywords: Wave packet; Group velocity; Lagrangian; Hamiltonian; Spin; Maxwell equations; Metric tensor; Christoffel symbol; 

Geodesic. 

Introduction 

I believe that the physical world will never be described in a fully satisfactory way, for us, as human beings. We 

shall always feel the necessity to revise this description. In our times more and more authors put into discussion the physical 

principles [1-10]. We perceive the physical world as a collection of objects in time , in a three-dimensional space of 
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we obtain the dynamic equations called Hamilton equations, 
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while the energy function of coordinates and momentum is called Hamiltonian, 
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However, this classical description tells us nothing about the structure of the physical world. Only Quantum 

Mechanics tells us something about the structure of the physical world. Namely, that this world is composed of species of 

identical quantum particles. On one hand, experimentally, it has been found that these particles are of a wavy nature. On the 

other hand, one could find that the simplest way to define a quantum particle is a wave packet, with the momentum 

conjugated to coordinates, and the energy conjugated to time, and a single quantum constant : 

 

 
 

 
 

 
 

 
 

i
1 3

, , d
03/2

2

i
1 3

, , d (5)
0 3/2

2

pr Et
r t p t e pE

pr Et
p t r t e rE

 



 




 

 
 

 

 

we can define a momentum operator,  
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acting on these wave functions. A Schrödinger equation is obtained for a particle wave function: 
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however, when the group velocities are calculated for these wave packets, 
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one obtains an erroneous equation, contradictory to the corresponding Hamilton equation (3) – a minus sign is missing: 
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Relativistic Quantum Principle  

 

We get back the minus sign only if we consider the Lagrangian instead of the Hamiltonian, originally considered in 

these equations, 
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we notice that these equations, depending on the classical Lagrangian 
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Are still non-realistic, having an infinite spectrum of waves, as a function of the wave velocity. A realistic particle 

has a finite spectrum as a function of the wave propagation velocity. A finite spectrum is obtained for a relativistic 

Lagrangian 
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As functions of the particle velocity rv 
  and the cut-off velocity c from (13) we notice that the invariance of the scalar 

time dependent phase variation of a wave function is equivalent to the invariance of the time-space interval. The invariance 

of the time-space interval means that a change of coordinates is in fact a rotation of the time-space coordinates. 

By a well-known calculation, the relativistic transform of the coordinate intervals is obtained for the 

quantum particle waves (FIG. 1):

V
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On this basis, we define a Relativistic quantum principle: The scalar time-dependent phase variation of a quantum particle 

wave is an invariant for an arbitrary change of coordinates. This means the invariance of the time-space interval, i.e. the 

relativistic kinematics of the particle waves. 
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FIG. 1. Change of coordinates, as a rotation of time-space system  10 ,


xx , moving with a velocity V  in a system

 ., 10 xx  

 

Spin-Statistics Relation 

 

For two-particle states , ,
1 2 1 2
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we get the two eigenvalues of this operator corresponding to the Fermi-Dirac statistics, and the Bose-Einstein statistics: 
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we take into account that the inversion operation is equivalent to a double rotation of the two particles with an angle (FIG. 

2),

   1 2
(20)I R R 

FIG. 2. A two-particle inversion as a double rotation with an angle  . 

In our case, when no orbital motion is considered, the rotation operator with a differential angle R


 , as a function 

of the total angular momentum J , reduces to a function of the proper angular momentum S , 
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for a rotation angle , we obtain the rotation operator 
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from (20), we obtain the relation between the eigenvalue of the proper rotation operator, called spin, and the eigenvalue of the 

inversion operator – the spin-statistics relation: 
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Quantum Particle in Electromagnetic Field 

 

When the wave packets  
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of a quantum particle with a charge e  are in a field of a vector potential  ,A r t  and a scalar potential  U r , a time 

dependent phase variation arises, with terms proportional to variations of coordinates and time: 
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In this case, we get a canonical momentum P , which includes a mechanical component P  as a function of the 

particle mass and velocity, and an electromagnetic component as the product of the charge with the vector potential: 
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From the group velocity in the momentum space, we get the Lagrange equation 
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which leads to the Hamilton equations 
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and an explicit time-variation 
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From (27), we obtain the first term of this expression as a function of the canonical momentum, 
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which leads to the canonical form of the Hamiltonian: 
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From (27), we also obtain the mechanical force acting on a quantum wave, 
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From equations (38) and (39) we obtain the Faraday-Maxwell law of the electromagnetic induction, 
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with the charge density as source of the electric potential  U r , while 
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  is a physical constant called permittivity. From 

the time variation of the electric field, 
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which leads to a field propagation with a velocity 
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we obtain the Ampère-Maxwell law 
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In this way, for the two fields (38) and (39), the Maxwell equations (40), (41), (43) and (48), and the Lorentz force (37), are 

obtained only from the condition of interaction with a quantum particle. For the physical consistency of this theory, the field 

propagation velocity (47) is equal to the cutoff velocity  of the quantum particle spectrum (FIG. 3). 

FIG. 3. Wave packet of a quantum particle with a cutoff velocity of the spectrum equal to the light velocity c . 

Spectrum cut-off velocity c 
= Light velocity 
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The Relativistic Quantum Principle and the Dynamic Equation 

 

We consider the time dependent phase differential 
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the dynamic equation (58) takes the form of the Lorentz force: 
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The Relativistic Quantum Principle and the Field Transformation 
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The Spin, As a Characteristic of the Quantum Particle Dynamics 

 

From (25) with the Hamiltonian (29), for a quantum particle in electromagnetic field at a rather low velocity, we 
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which for the two components is 
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From (89) and (97) we find the gyromagnetic ratio 
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Dynamics of a Quantum Particle in a Gravitational Field 
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In this case, a quantum particle is described by two wave packets of the form 
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we obtain 

 

 

0 0
d 1 d d2

0,0 0,0 00,d 2 d d
0 0 1 1

1 12 2
1 2

00,2 2

2 2
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x xj j j
a v c g g g g

t s s

j j
c g g c g V

x

V mj j
c g c g

rx x

j
mc g

r r


  

 
 

 
 

    


  



 
   

 


 



 
 
  
 

 
 
 

 
 
   

 

Taking into account that in a central field our particle is accelerated only in the radial direction, we obtain, 

 

1 2
2 - Newtonian field with rwlativistic correction1

1
2   (Scwarzschild metrics)

2
0

3
0 (108)

m mc
a

r r

a

a



  





 
 

  

 

 

Quantum Particle Wave as a Distribution of Matter 

 

We consider a quantum particle described by wave functions of the form (99) or (103) as a distribution of matter 

with a normalized density  tzyx ,,,  in Cartesian coordinates, 
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2

, , , d d d , , , d d d 1 (109)x y z t x y z x y z t x y z     

 

or  ,
i

x t  in curvilinear coordinates,  

 

   
 

 
2 , ,1 2 3 1 2 3

, d d d , d d d 1 (110)
1 2 3

, ,

x y zi i
x t x x x x t x x x

x x x

 


  


 

satisfying the relation 

 

   
 

 
2 , ,

, , (111)
1 2 3

, ,

x y zi i
x t x t

x x x

 






 

 

We define a velocity field of the matter motion 

 

d d
(112)

d d

j j
x xj j

v c cx
t s

    

 

From the invariance of the time-space interval, 

 

d d ds g x x
 

  

 

which is 

 

1 g x x
 

  

 

by covariant derivation, 

 

   0 2: : ::
g x x g x x x x g x x

      
     

   
 

 

we find that any covariant derivation of the velocity is perpendicular to this velocity, as a condition of the matter motion: 

 

0 (113):x x


    

This means that, besides the geodesic acceleration, we suppose an additional acceleration component A


, 
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d
,

d

x
x x x x A

s


    
    

which is 

 ,A x x x
    

   

By the scalar multiplication with the velocity x ,

/:A x x x
  

 

from (113) we find that any possible additional acceleration A


 of a particle wave is perpendicular to the velocity x  of

this wave: 

0 (114):

0

x A x x x
  

   

In other words, the theory of general relativity describes a motion of the matter in planes, perpendicular to the geodesic 

motion, according to the wavy description (99) or (103) of this motion, as it is illustrated in FIG. 4 . 

FIG. 4. Wave plane in the propagation of a quantum particle as a continuous matter motion, according to the general 

theory of relativity. 

At the same time, we notice that the transformation of the normalization condition of the matter density for an 

arbitrary system of coordinates, 

x

A
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   0 1 2 3 0 1 2 3
d d d d d d d d (115)x x x x x x J x x x x

 
 

    
   

 

includes the Jacobian 

 

 
 
 

0 1 2 3
, , ,

Det (116), 0 1 2 3
, , ,

x x x x

J x

x x x x




   



 



 

 

as a determinant of the tensor transformation elements. From the tensor transformation of the metric tensor, 

 

(117), ,
g x x g

 
   
 

  
 

 

the Jacobian is obtained as a ratio of the square roots of the metric tensor determinants  

 

 Det (118)g g  

 

for the two systems of coordinates: 

 

(119)
g

J
g





 

 

With this expression, from the density normalization condition (115), we obtain a density invariant for an arbitrary change of 

coordinates: 

 

    Invariant (120)x g x g


 


     

 

For the matter flow vector 

 

(121)J x
 

  

 

we consider a null covariant divergence: 

 

0 (122): , ,J J J J J
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From the expression  

 

 1
(123)

, , ,2
g g g g g

  
              

 

we obtain the Christoffel symbol in equation (122) as a function of the metric tensor determinant, 

 

 
   

1 1 1 1
,, , , ,2 2 2

11

,2

g g g g g g g g

g g

  
        




     


  

 

 

With the expression 

 

 

 

 
, ,

2

gg

g g

 



 

 

 

this Christoffel symbol is 

 

 
,

(124)

g

g






 


 

 

With this expression, equation (122) takes the form of a null divergence 

 

 

  0: , ,

,

J g J g J g J g

g

   
   



        



 

 

which is 

 

  0 (125): ,
J g J g
 
 

     

 

In this way, we obtain a null integral of the matter flow divergence over a volume V of the space coordinates: 

 

  3
d 0 (126)

,
J g x

V
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In this integral, we can separate the time derivative term from the space derivative terms, which means a matter 

conservation relation, 

 0 3 3
d d

,,0

2
d , 1,2,3 (127)

m
J g x J g x

mV V

m
J g x m

V

    

   


 
 
 

as a time variation of the matter contained in a volume V  by a matter flow through the surface 
V

 of this volume. We 

notice that for the nonrelativistic case, 
m

x c , 

0 0

(128)

J x

m m
J x

 



 



while the metric tensor determinant is 1g . In this way, we obtain the classical expression of the conservation condition: 

3 2
d d (129)r J r

V V

   


In this way, a quantum particle appears as a distribution of continuous conservative matter, moving on geodesics, 

with possible accelerations only perpendicularly to these geodesics, in agreement with the wavy description of the quantum 

mechanics.  

Conclusion 

We formulated a relativistic quantum principle, asserting that a quantum particle is described by a wave packet with a 

finite spectrum, and invariant time dependent phases to an arbitrary change of coordinates. Based on this principle, we 

derived a unitary relativistic quantum theory, including: 

 The relativistic kinematics of a quantum particle

 The relativistic dynamics of a quantum particle

 The Maxwell equations of a field interacting with a quantum particle

 The dynamics of a quantum particle in electromagnetic field

 The relativistic electrodynamics

 The spin of a quantum particle

 The relativistic dynamics of a particle in a gravitational field, as a deformation of the Time-space metrics.
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We essentially showed that a quantum particle can be described as a distribution of continuous conservative matter 

moving according to the general theory of relativity. 
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