EFFICIENT SYNTHESIS OF 4, 4'-DIAMINO DIPHENYL METHANES IN A WATER SUSPENSION MEDIUM

T.PRADEEP, P. KARUNAKAR, W.N. JADHAV, R.P. PAWAR AND S.R. BHUSARE*

Organic Chemistry Synthesis Laboratory, Dyanopasak College, PARBHANI-431401 (M.S.), INDIA E-mail:bhusare71@yahoo.com Fax: +972-2-6757076

ABSTRACT

The aromatic amines are condensed with formaldehyde to afford the corresponding diamino diphenyl methanes. The method is simple and eco-friendly. The diamino diphenyl methanes are synthesized in high yields using water as a solvent.

Key words: 4, 4'-Diamino diphenylmethanes,

INTRODUCTION

Diamino diphenyl methanes were found to be have various applications like curing agents and chain extenders in polymerization reactions 2-5. Polymerization is an unavoidable process resulting in poor selectivity. These diamino diphenyl methanes are also being used as an intermediate in various reactions. The conventional methods of preparation involve the use of specific mineral acids and alkali at various stages 6-9. The use of catalyst under solvent conditions and also in dry media has been already studied 7-10. The reaction was also been studied under microwave irradiation conditions 11-14. In present communication, synthesis of 4, 4'-diamino diphenyl methanes in water solvent without any catalyst has been reported.

EXPERIMENTAL

Melting points were determined in open capillary tubes and are uncorrected. IR spectra were recorded in nujol on Perkin-Elmer 237 spectrophotometer. ¹H NMR was recorded in CDCl₃ on Perkin-Elmer R-32 spectrometer using TMS as an internal standard. (Chemical shift is given in ppm).

Preparation of 2, 2'-dimethyl-4, 4'-diamino diphenyl methane (3)

To a slurry of o-toluidine (2 g, 18.66 mmol) in water (50 mL), was added formaldehyde solution (37 %, 0.7 mL, 9.33 mmol) was added slowly with constant stirring till the 2, 2'-dimethyl-4, 4'-diamino diphenyl methane was precipitated out. The solid was filtered, dried and crystallized from ethanol to give (3). v_{max} 3487 (N-H) and 1590 cm⁻¹ (C=C). ¹H NMR(δ): 2.39

Table 1. Physical data of 4, 4 -diamino diphenyl methanes

S.No.	Aniline used	Product	Reaction time in hrs.	Yield (%)a,b	M.P. (°C)
1	NH ₂ NO ₂	O ₂ N NO ₂	WATER OF	78	156
2	NH ₂	H ₂ N NO ₂ NO ₂ NH ₂	to the control of the	93	178
3	NH ₂ CH ₃	H ₂ N NH ₂	m off zonedlen		>280
4 zanogi	NH ₂ OH	HO NH ₂	2	00 no dipheny	134
as an tase 5 in the contract of the contract o	NH ₂	H ₂ N NH ₂	conviny These is reagions. The is and alkali a ordey media he	75 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	>280
6	NH ₂ SH	HS SH NH ₂	0.0	79 ^{laib} 0	>280
rubega 7 beb itida la	NH ₂		ere determined al on Perkin-P er R-32 spectro		92
8 dehydel			, 2'-dimethyl-4 ohidde (2 g, mL, 9.33 mm	82 your	138

^aRefers to isolated yield.

^bAll the products exhibited the expected analytical and spectral data.

(s, 3H, CH₃), 3.83 (s, 2H, CH₂), 6.24-6.78 (m, 6H, Ar-H). Similarly all other compounds were also synthesized (Table-1).

$$CH_3$$
 + H_2N CH_3 H_2N CH_3 H_2N

Scheme-1

RESULTS AND DISCUSSION

The procedure involves two steps. In first step, the water was mixed with aromatic amines to agitated slurry and in second step, the formaldehyde was added drop wise to the water amine mixture with constant stirring till the reaction was completed.

The method employed is simple, efficient and reproducible. The method is unlike the acid, alkali conventional procedure used. The method developed for this synthesis is without using a catalyst and the conversion was significantly high i.e. 75-93% yields.

ACKNOWLEDGEMENT

We are thankful to Dr. Y.B. Vibhute, Yeshwant Mahavidyalaya, Nanded, for his valuable suggestions during the course of this work.

REFERENCES

- 1. D. Villemin, M. Hammadi and B. Martin, Synth. Commun. 26, 2895 (1996).
- 2. J. T. Scanlan, J. Am. Chem. Soc., 57, 890 (1935).
- 3. W.F. Gum, W. Riese and H. Olrich, Reaction Polymers Ed.; New York, Oxford Press, (1992).
- 4. P. G. Gassman and D. A. Singleton, J. Am. Chem. Soc., 106, 7993, (1984).
- 5. B. K. G. Theng, The Chemistry of Clay Organic Reactions, Adam Wilger, London, (1974) p 261.
- 6. R. S. Verma, Green Chemistry, 1, 43 (1999).
- 7. C. Collect, A. Delville and P. Laszio, Angew Chem. Ind.; Ed. Engl.; 29, 535 (1990).
- 8. S. Chalais, P. Laszio and Mathey, Tetrahedron Lett., 27, 2627 (1986).
- 9. M. Lalithambika, R. Sukumar, D. Bahulayam and K. R. Sabu, Bull. Catal. Soc., 9, 156 (1999).

- K. R. Sabu, R. Sukumar and M. Lalithambika, Bull. Chem. Soc. Jpn., 63, 3535 (1993.).
- A. Cornelis and P. Laszio, Synthesis, 909 (1985). 11.
- M. Hammadi and D. Villemin, Synth. Commun., 26, 2901 (1996).
- 13. D. Ponde, H. B. Borate, A. Sudalai, T. Ravindranathan and V. H. Deshpande, Tetrahedron Lett., 37, 4605 (1996).
- 14. W. G. Dubem, J. U. Cagan and V. Behar, Tetrahedron Lett., 31, 3241 (1990).

Accepted: 30.7.2003