Effects of gating geometry on casting solidification using computer simulation tools

K.K.Pathak¹*, Vijay Verma², Pankaj Pawar³, Geeta Agnihotri²
¹Department of Civil & Env. Engg, NITTTR Bhopal (MP) 462002, (INDIA)
²Department of Mech. and Production & Industrial Engg, MANIT Bhopal (MP) 462007, (INDIA)
³CSD Center AMPRI (CSIR) Bhopal (MP) 462064, (INDIA)
E-mail : kkpathak1@rediffmail.com

ABSTRACT

In this study, gravity sand casting simulations are carried out considering four gate sections. Viz. triangular, square, circular and half hexagon. Simulation results are critically examined in terms of shrinkage porosity, fill time, solidification time and velocity. Based on simulation results a comparative study of all the section has been made and some design guidelines are proposed.

© 2014 Trade Science Inc. - INDIA

INTRODUCTION

Casting is the oldest known process to produce metallic components. The first metal casting was done using stone and metal moulds during the period of 4000–3000 BC. Since then, various casting processes have been developed. In casting, the liquid material is poured into a cavity (die or mould) corresponding to the desired geometry. The shape obtained in the liquid material is stabilized, usually by solidification, and can be removed from the cavity as a solid component. In past casting processes were designed based on trial and error approach. Such approaches were prone to casting defects and were uneconomical due to enlarged design period.

In modern days computer simulation is widely used for casting process design. Some of the prominent literature on casting simulation is as follows:

Advances in modeling of casting processes using smoothed particle hydrodynamics (SPH) are described by¹⁰. Three-dimensional simulations of high pressure die casting were presented for two realistic dies. The design of gating and risering, or rigging systems as they are sometimes referred to, has been very important task in the manufacture of cast components. This paper presented by¹¹, is a compilation of common rules of thumb used by foundry experts and guidelines suggested by researchers for better quality castings. The L-shaped junctions in running and gating systems used in aluminium gravity casting were investigated by¹². Using computational modeling, a guideline for constructing two geometries of L-junctions was developed¹³, used various analytical FEM, FDM tools for flow process analysis including die casting. A design guideline was induced by¹⁴, while investigating resin flow patterns considering depending on several gate positions obtained by numerical analyses of a simple strip with a hinge.¹⁵ described the simulation and experimental results of thermal analysis in sand casting process. Simulation model of 2-ingate mould and 3-ingate mould of sand casting
are developed. The effects of gating systems, number of runner, and their locations, in the Lost Foam Casting (LFC) of Aluminum alloy (A.413.0) were investigated by[8]. Finite element analysis in heat transfer can be program for finite element modeling of casting Venkatesana et. al. (2005) developed finite element software for casting solidification analysis.

In this study, computer simulations of sand casting process considering different gate cross section have been studied. Four different cross sections of gate are Triangular, Square, Circular, and Half Hexagon. The effect of the gating system on the casting is analyzed in terms of shrinkage porosity, fill time, solidification time and velocity.

GEOMETRICAL AND MATERIAL PARAMETERS

The geometrical parameters used in this study are as follows:

- The cross sectional area of Gating system for all section (triangular, square, circular & half hexagon) = 176 mm2 Dimension of these sections are shown in Figure 1.
- Runner diameter = 12 mm
- Diameter of pouring basin is = 20 mm
- Height of pouring basin =10 mm.
- Dimensions of mold cavity = 100 x 100 x 100 mm3
- Dimension of the mold box = 190 x 120 x 130 mm3

Material properties are as follows:
- Pouring material = Al-201
- Pouring temperature = 700 ÊC
- Moulding material = Silica sand
- Heat transfer coefficient = 100
- Flow rate 1Kg/sec
- Gravity 9.8 m/sec2

The thermal properties for these materials are taken from the library of ProCAST software (Ref.10).

CAD Modeling and simulation

First step of computer simulation is to make the CAD model of the all casting elements. CAD model elaborating mould box and basin sprue is shown in Figure 2(a) & (b). CAD models shown different gate cross sections are shown in Figure 3(a), (b), (c) & (d). After making the model on I-deas software (Ref.9), this file is stored in. xmt format exported to MeshCAST, which is the next module of the ProCAST software where finite element mesh is developed. In MeshCAST tetrahedral elements are used for meshing of the casting. There are 37747 elements and 8315 nodes in the finite element model. The finite element model for triangular section is shown in Figure 4. After meshing material properties and boundaries conditions mentioned above is imposed and simulation are carried out.

RESULT AND DISCUSSION:

The summary of simulation results are given in TABLE 1 can be critically examined under following heads:

Shrinkage porosity

Shrinkage porosity is minimum in case of half hexagon section hence half hexagon section is best among the four section. In case of square section shrinkage porosity is maximum. Bar chart for shrinkage porosity is shown in Figure 9. Shrinkage porosity contour for different gating section are shown in Figure 5(a), 6 (a), 7(a), and 8(a).

Filling time

Triangular section takes more time to fill the mold. While in case square section filling time is minimum. Bar chart for filling time is shown in Figure 8. Filling time contour for different gating system is shown in Figure 5(b), 6 (b), 7(b), and 8(b).
Figure 2: Mould box, Pouring basin

Figure 3: CAD Models for different cross section

(a) Mould box
(b) Pouring basin

(a) Triangular section
(b) Square section

(c) Circular section
(d) Half hexagon section
138 Effects of gating geometry on casting solidification using computer simulation tools

Full Paper

Figure 4: Meshed model of Triangular section mold

TABLE 1: Simulation Results

<table>
<thead>
<tr>
<th>S.N.</th>
<th>Model</th>
<th>Shrinkage porosity</th>
<th>Fill time in sec</th>
<th>Velocity in m/sec</th>
<th>Solidification time in sec</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Triangular</td>
<td>0.72</td>
<td>18.67</td>
<td>0.981</td>
<td>2452</td>
</tr>
<tr>
<td>2</td>
<td>Square</td>
<td>0.73</td>
<td>18.52</td>
<td>0.997</td>
<td>2777</td>
</tr>
<tr>
<td>3</td>
<td>Circular</td>
<td>0.724</td>
<td>18.58</td>
<td>1.049</td>
<td>2912</td>
</tr>
<tr>
<td>4</td>
<td>Half hexagon</td>
<td>0.718</td>
<td>18.54</td>
<td>1.003</td>
<td>2928</td>
</tr>
</tbody>
</table>

Velocity

Velocity in case of circular section is maximum while in case of triangular section is minimum. Bar chart for velocity is shown in Figure 9. Velocity contour for different gating system are shown in Figure 5(c), 6(c), 7(c), & 8(c).

Solidification time

Half hexagon section takes maximum time for solidification and in case of triangular section solidification time is minimum. Grains in case of triangular gate will be finer than the other sections. Bar chart for solidification time is shown in Figure 10. Solidification time contour for different gating system are shown in Figure

Figure 5: Simulation of triangular section

(a) Solidification time

(b) Shrinkage porosity

(c) Filling time

(d) Velocity
Figure 6: Simulation of square section
(a) Solidification time
(b) Shrinkage porosity
(c) Filling time
(d) Velocity

Figure 7: Simulation of circular section
(a) Solidification time
(b) Shrinkage porosity
(c) Filling time
(d) Velocity
Effects of gating geometry on casting solidification using computer simulation tools

Figure 8: Simulation of half hexagon section

Figure 9: Bar chart for shrinkage porosity

Figure 10: Bar chart for Fill time

Figure 11: Bar chart for velocity

Figure 12: Bar chart for Solidification time
5(d), 6(d), 7(d), 8(d).

CONCLUSION

With the help of simulation result obtained for aluminum alloys (Al-201) we can conclude that:

1. Triangular section takes minimum solidification time and half hexagon section takes maximum time for solidification.
2. Shrinkage porosity is minimum in case of half hexagon section hence half hexagon section is best among the four section, while in case of square section shrinkage porosity is maximum therefore it is not good.
3. Triangular section takes more time to fill the mold and square section takes minimum time to fill the mold.
4. Velocity is maximum in circular section and minimum in triangular section.

REFERENCES

