ISSN : 0974 - 7486

Volume 14 Issue 8

Materials Science An Indian Journal FUN Paper

MSAIJ, 14(8), 2016 [326-329]

Effect of water quality on flotation performance case study gol-Egohar iron mine Iran

Mehdi Bazmandeh^{1*}, Abbas Sam¹, Mehdi Ranjbar^{2,3}

¹Mining Engineering Department, Faculty of Engineering, ShahidBahonar University, JomhouriIslami Blvd, P.O. Box 76169-133, Kerman, (IRAN) ²Department of Chemistry, ShahidBahonar University of Kerman, P.O.Box 76175-133, Kerman,(IRAN)

³YoungResearcheres Society, ShahidBahonar University of Kerman, (IRAN) E-mail: Ranjbarmehdi67@yahoo.com

ABSTRACT

A study was carried out to determine the effect of water quality on flotation performance. As water resources become scarcer and society's demands to reduce freshwater extraction haveincreased, mine sites have been increasing water reuse and accessing multiple water sources for mineral processing to save freshwater, particularly in froth flotation. Implementation of either strategy may lead to water quality variation that may impact flotation efficiency. In this paper, a review of the existing studies on water quality variation in flotation is given in three aspects: causes of water quality variation, consequences of water quality variation and solutions for problems caused by water quality variation. Based on the three aspects, a framework was developed, with which these studies were categorized and structured. Organizing literature in this way makes it possible to identify gaps in current research and future research directions.

© 2016 Trade Science Inc. - INDIA

INTRODUCTION

In many areas water is scarce and its control has become an increasing requirement^[1]. This has led to the use of relatively impure primary water supplies and high proportions of recycle from tailings dams, thickener overflow, dewatering and filters products in minerals processing^[2,3]. It is well known that there are now minerals processing operations in which zero water release is required by environmental regulations^[4]. Primary water supplies from bore holes containing high levels of salinity including calcium,

KEYWORDS

Water consumption; Flotation; Recycling water.

magnesium and iron salts as potential precipitates are being used in several areas in minerals processing operations. Treated sewage effluent water with relatively high levels of total organic carbon is being used at some sites for make – up water supply^[5-7]. In many cases recycling waters within flotation plants is advantageous as; it lowers the need to receive new waters into the system, it lowers the amount of discharge and it allows retention of some reagents, lowering reagent consumption^[8]. Two important strategies being implemented to improve water efficiency are increasing water reuse and accessing alternatives to freshwater for mineral process-

Fall	Papei

Retrieval Fe	Elimination OF Sulfur (%)	n Efficiency OF Seperation S(%)	Cutie	e Conce	entrate	Cutie feed			Weight Concentrate	Kind of water
(%)			S	FeO	Fe	S	FeO	Fe	Concentrate	water
97.68	71.67	57.23	0.21	26/7	67/54	0/70	26/45	67.01	576.24	Salty water
96.46	69.61	55.67	0.27	26/8	67/9	0/70	26/45	67.01	575.35	Brackish water
97.69	57.02	53.21	0.32	26/7	67/7	0/70	26/45	67.01	573.5	fresh water

 TABLE 1 : Operating conditions applied in flotation experiments

 TABLE 2 : Operating conditions applied in flotation experiments

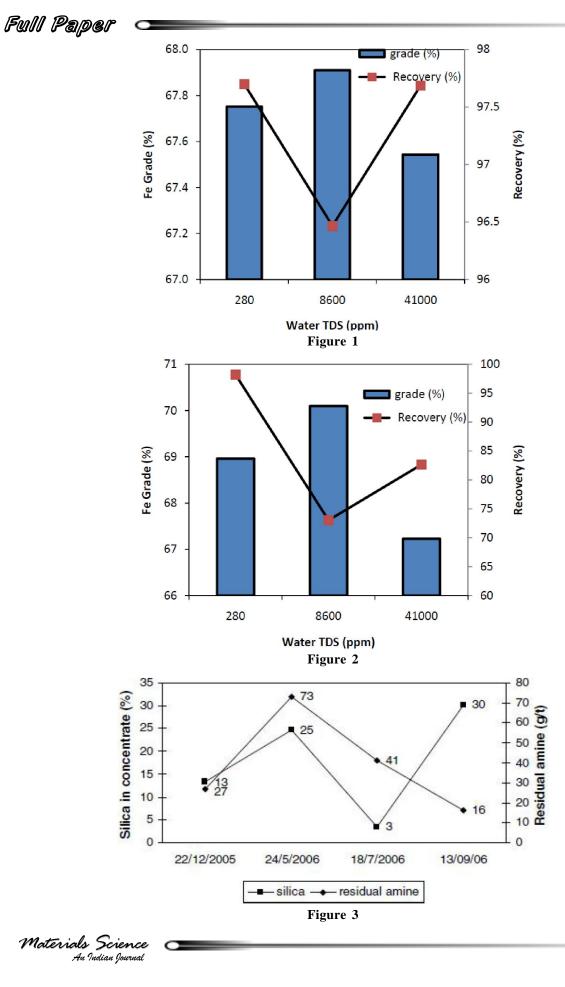
Retriev al Fe	Elimination OF Sulfur (%)	OF	Efficiency OF Seperation	OF Cutie Concentrate			Cutie feed			Weight Concentrate	Grading Feed Floatation
(%)		Seperation S(%)	S	FeO	Fe	S	FeO	Fe	Concentrate	(d ₈₀) μm	
82.66	62.29	51.32	0.29	27.91	68.96	0.71	26.45	67.01	550.32	Salty water	
73.03	62.01	50.21	0.32	28.14	70.10	0.71	26.45	67.01	565.9	Brackish water	
98.17	63.45	54.23	0.23	26.67	67/23	0.71	26.45	67.01	580.1	fresh water	

ing, particularly in flotation. Implementation of either strategy has been shown to increase the tendency for water quality to change, which, in turn, may affect flotation efficiency. In general, flotation is most effectively undertaken with clean water. As a second preference, metallurgists seeka consistent water quality so that reagent regimes for flotation can be developed and applied consistently. Variation in water quality is undesirable because it could complicate operating conditions and compromise flotation performance (TABLE 1 and 2).

EXPERIMENTAL

Flotation experiments were planned for three d_{80} 58 and 82 micron to investigate effect of water quality on flotation performance. An amount of hematit of g was conditioned with 140 ml of de-ionised water (percent solid = 25 wt per cent). For each experiment, hematit was depressed before any other conditioning step: the pH was fixed at 6.8 with NaOH and the pulp was agitated in the flotation cell without aeration during 30 minutes

RESULT AND DISCUSSION


The examination of water quality and its effecton batch flotation results should be considered when optimal conditions for colemanite flotation aredetermined.

To understand the observed water qualityphdependency of flotation stability. Tab. 1 shows the effect of water quality on flotation performance in d_{80} =58. The pH had a strong effect on froth stability (Figure 1). The froth maximum height at equilibrium increased from 400 to 750 mm, when the pH decreased from 11 to 6, and the half-life from 13 to 18 s. A further decreasing of the pH to 4 caused the slurry to overflow from the column, meaning that the froth height was more than 900 mm (which is the limit of the instrument) (Figure 2). Therefore, the froth stability is pH dependent.

S.E. =
$$\frac{c(f-t)(c-f)(100-t)}{f(c-t)^2(100-f)} \times 100$$

In a first set of experiments, amine from residual water was theonly source of collector. Later, experiments were performed withthe addition of amine dosages of 20 g/t, 35 g/t, and 50 g/t. For thissequence a composition water was prepared taking into account theproportion of tailings from each circuit. Another series of experimentssimulated an operation with the use of only residual aminein the rougher flotation and amine solution addition in a cleanerstage at dosages of 20 g/t, 35 g/t, and 50 g/t. The results of the tests with water containing residual aminewere compared with those from the standard test, performed withdistilled water and amine solution pre-

329

pared in the laboratory. The control parameter was silica content in the concentrate (Figure 3).

ACKNOWLEDGMENTS

Authors are grateful to council of University of ShahidBahonar of Kerman And Gol-e Gohar Iron Ore Complex (Sirjan,Iran).

REFERENCES

- [1] K.L.Sutherland, I.W.Wark; Principles of flotation, Australia: Australian Institute of Mining and Metallurgy Inc., (1955).
- [2] J.M.P.Viviers; The effect of water quality on mineral flotation, National Institute for Metallurgy, Ore dressing division, Technical Memorandum No. 15033, Project No. 04978/1, (**1979**).
- [3] R.D.MacDonald et al.; Flotation test procedures and sampling and testing, In: Weiss NL, Editor, SME mineral processing handbook, New York, USA: Kingsport Press, (1987).
- [4] A.F.Taggart; Handbook of mineral dressing, Ores and industrial minerals, New York, USA: Wiley, (1954).
- [5] D.W.Fuerstenau; Editor, Froth Flotation Fiftieth Anniversary Volume, New York, USA: SME/AIME, (1976).
- [6] D.W.Fuerstenau, Editor, Mineral and coal flotation circuits, The Netherlands: Elsevier, ISBN0- 444-41919-5, 3, (1981).

- [7] D.W.Fuerstenau; Semi-soluble salt flotation, In: King RP, Editor, The principles of flotation, Johannesburg, South Africa: South African Institute of Mining and Metallurgy, ISBN 0-620-05957-5, (1982).
- [8] J.Leja; Surface chemistry of froth flotation, New York, USA: Plenum Press, (1982).
- [9] B.A.Wills; Mineral processing technology, 4th Edition, Oxford, England: Pergamon Press, (**1992**).
- [10] R.E.Gomez, J.A.Finch, A.R.Laplante; Effects of the type of water on the selective flotation of pyrochlore from niobec, colloids and surface, Amsterdam: Elsevier Science Publishers B.V., 26, 333–50 (1987).
- [11] M.S.Celik et al.; Activation mechanisms of barium ions incolemanite flotation, In: Ozbayoglu G, Editor, The Proceedings of the Fourth International Mineral Processing Symposium, 20–22 October. Antalya, Turkey: METU Press; (1992).
- [12] S.G.Ozkan, T.J.Veasey; Effect of slime coating on colemanite flotation, In: H.Demirel, S.Ersayın, Editors, Progress in mineral processing technology, Cappadocia, Turkey: Balkama Publishers, (1994).
- [13] S.G.Ozkan, M.S.Alp; Effect of water quality on colemanite flotation, Geosound, No. 27, Cukurova University, Adana, Turkey, (1995).
- [14] S.G.Ozkan; Flotation studies of colemanite ores from the Emet deposits of Turkey, Ph.D.Thesis, The University of Birmingham, Birmingham, England, (1994).

