ISSN: 0974 - 7486

Volume 13 Issue 1



Materials Science An Indian Journal FUN Paper

MSAIJ, 13(1), 2015 [001-013]

# Effect of alloying elements on structure, physicaland chemical properties of SnBiZn solder alloy

Abu Bakr El-Bediwi, Amira El-Shafei, Mustafa Kamal Metal Physics Lab., Physics Department, Faculty of Science, Mansoura University, (EGYPT) E-mail: baker\_elbediwi@yahoo.com

## ABSTRACT

The effect of adding alloying elements, (Cu, In, Al, Se and Ag), on microstructure, electrical resistivity, elastic modulus, internal friction, melting point, wetting and corrosion behavior of Sn<sub>22</sub>Zn<sub>4</sub>Bi<sub>24</sub>alloy have been investigated. Melting point, elastic modulus, internal friction, contact angle and electrochemical parameters of  $Sn_{72}Zn_4Bi_{24}alloy varied after adding$ Cu, In, Al, Se and Ag contents. The  $Sn_{70}Zn_4Bi_{24}In_2$  alloy has lower melting point, elastic modulus and internal friction values. The Sn<sub>20</sub>Zn<sub>4</sub>Bi<sub>24</sub>Ag<sub>2</sub>alloy has lower contact angle, corrosion rateand corrosioncurrent. Adding Cu, Al, Se and Ag content improve mechanical and electrical properties of  $Sn_{72}Zn_4Bi_{74}$  lead free solder alloy. © 2015 Trade Science Inc. - INDIA

## KEYWORDS

Microstructure; Wetting properties; Electrical resistivity; Mechanical properties; Electrochemical corrosion behavior; Lead free solder alloys.

## **INTRODUCTION**

Lead-free solders in commercial use may contain tin, copper, silver, bismuth, indium, zinc, antimony, and traces of other metals. Sn-Zn solder alloy containing about 9 wt. % zinc (eutectic composition) has been proposed as a lead-free solder material which is expected to be put into practical use for reflow soldering. Those Sn-Zn solder alloys have advantages such that a eutectic temperature of a tinzinc alloy is equal to 199° C, closest to a eutectic point of a tin-lead alloy among Sn-based lead-free solder alloys and costs of raw materials of them are lower than those of the other lead-free solder alloys. The influence of adding cadmium content on

structure and physical properties of SnZn<sub>o</sub> alloy has been investigated by El-Bediwi et al<sup>[1]</sup>. Also thermodynamic properties and phase equilibrium relationship of Sn-Bi-Zn lead free solder alloys are determined experimentally and theoretically by Yang et al<sup>[2]</sup>. Adding Ag to Sn-9Zn alloy inhibits the anodic dissolution of Zn and enhances the wettability of the solder alloy on Cu substrate<sup>[3]</sup>. The effect of RE elements on the microstructure, mechanical properties, wetting behavior of certain Pb-free solder alloys reported and summarized<sup>[4]</sup>. Several research<sup>[5-7]</sup> studied eutectic tin- silver lead free solder alloy. The results show that, the eutectic SnAg<sub>35</sub> is regarded as a good lead free solder alloy for certain aspects such as superior fatigue properties. Also

structure, electrical resistivity, wettability, melting point and elastic modulus of Sn<sub>50</sub>In<sub>50</sub>, Sn<sub>722</sub>In<sub>20</sub>Ag<sub>2.8</sub>, Sn<sub>725</sub>In<sub>25</sub>Ag<sub>25</sub> and Sn<sub>95</sub>Ag<sub>5</sub> lead free solder alloys have been investigated<sup>[8]</sup>. The results show that, adding silver decreased electrical resistivity and wetting and increase melting point and elastic modulus of tin-indium. Adding In from 0 to 3 wt. % to Sn-0.3Ag-0.7Cu lead-free solder alloy lowered its solidus and liquidus temperatures with increasing melting range. Also wetting time of alloy is reduced with increased wetting force by increasing In content<sup>[9]</sup>. Indium is a useful element to solve the problem of high melting point and low wettability of solder on Cu substrate<sup>[10, 11]</sup>. Microstructure, thermal properties, corrosion and oxidation resistance of Sn-9Zn-0.5Ag-1In solder alloy were studied<sup>[12]</sup>. Adding 1% of In to Sn-9Zn-0.5Ag alloy decreased melting point of alloy and enhanced adhesion strength of alloy on Cu substrate. Also Sn-In-Ag system offers several advantages such as good wettability<sup>[13, 14]</sup>, good corrosion behavior<sup>[15]</sup>and very satisfying interaction with the substrate, especially with copper<sup>[16]</sup>. Many studies have been made on various solders alloy based on Sn, e.g., Sn-9Zn, Sn-3.5Ag, Sn-3Ag-0.5Cu, etc. as likely substitutes<sup>[17-19]</sup>. The properties of two lead free solder alloys, Sn-3.5% Ag-1% Zn and Zn-In, are described by M. Mc Cormack et al<sup>[20]</sup>. Solidification behaviors of Sn-9Zn-XAg lead-free solder alloys are examined<sup>[21[</sup>.

The melting behavior, wetting characteristic, coefficient of thermal expansion, microstructure and interfacial reaction kinetics between Sn-Bi-Ag-(In) solders and Au/Ni metalized Cu substrate are studied by R. K. Shiue et al<sup>[22]</sup>. The Sn-Bi alloy has the highest ultimate tensile strength of all alloys examined, while both Sn-Ag and Sn-Zn alloys are lighter and exhibited higher ductility than the Sn-Pb and Sn-Bialloys<sup>[23]</sup>. Thermal properties and microstructure of 58% Bi-42% Sn, 53% Bi-26% Sn-21% Cd,70% In-30% Sn, 50% Sn-50% In and 3% Sn-37% Bi-10% In solder alloys have been studied and analyzed<sup>[24]</sup>. The thermodynamic properties and phase equilibrium relationship of Sn-Bi-Zn lead free solder alloys are determined experimentally and theoretically by Yang et al<sup>[25]</sup>. Microstructure, electrical, mechanical and thermal properties of rapidly solidi-

Materials Science An Indian Journal fied Bi<sub>58</sub>Sn<sub>42</sub> eutectic alloy have been investigated using scanning electron microscope, x-ray, double bridge method, dynamic resonance technique and Vickers hardness tester<sup>[26]</sup>. The results show that, Bi-Sn eutectic alloy has a good soldering property such as low melting point, mechanical properties, adequate wettability and cost. The 69.5Sn-30Bi-0.5Cu exhibits good wettability on Cu substrate. Intermetallics formed at the 69.5Sn-30Bi-0.5Cu/Cu interface are identified as Cu<sub>2</sub>Sn<sub>5</sub> adjacent to the solder and Cu<sub>3</sub>Sn adjacent to the Cu substrate, respectively. Formation of intermetallic seems to improve strong wetting of the substrate by the solder<sup>[27]</sup>. A bismuthsilver alloy (Bi-11wt. %Ag) has been identified as a viable Pb-free power die-attach solder<sup>[28]</sup>. The alloy has a solidus at 262.5°C and a liquidus at 360°C. It has a shear modulus of 13.28 GPa and an ultimate tensile strength (UTS) of 59 MPa. The aim of this work is to improve\ or produce new alloy with superior properties by adding alloying elements to Sn<sub>72</sub>Zn<sub>4</sub>Bi<sub>24</sub>alloy.

## **EXPERIMENTAL WORK**

In the present work,  $Sn_{72-x}Zn_4Bi_{24}X_x(X=Ag, Al,$ Cu, Se and In and x=2 wt.%) were melted in a muffle furnace using tin, zinc, bismuth, copper, aluminum, indium, silver and selenium of purity better than 99.5 %. The resulting ingots were turned and re-melted four times to increase the homogeneity. From these ingots, long ribbons of about 4 mm width and ~70 um thickness were prepared by a single roller method in air (melt spinning technique). The surface velocity of the roller was 31.4 m/s giving a cooling rate of  $\sim 3.7 \times 10^5$  K/s. The samples then cut into convenient shape for the measurements using double knife cuter. Structure of used samples was performed on the flat surface of all samples using an Shimadzu Xray Diffractometer (Dx-30, Japan) of Cu-Ka radiation with  $\lambda$ =1.54056 Å at 45 kV and 35 mA and Ni– filter in the angular range  $2\theta$  ranging from 0 to  $100^{\circ}$ in continuous mode with a scan speed 5 deg/min. Scanning electron microscope JEOL JSM-6510LV, Japan also was used to study microstructure. The electrical resistivity was measured by a conventional double bridge method. The differential thermal



analysis (DTA) thermographs were obtained by SDT Q600 V20.9 Build 20 instrument with heating rate 10 °k/min. The internal friction Q<sup>-1</sup> and the elastic constants were determined using the dynamic resonance method. The value of the dynamic Young modulus Eis determined by the relationship<sup>[29–31]</sup>. The polarization studies were performed using Gamry Potentiostat/Galvanostat with a Gamry framework system based on ESA 300. Gamry applications include software DC105 for corrosion measurements, and Echem Analyst version 5.5 software packages for data fitting.

### **RESULTS AND DISCUSSION**

## X-ray analysis

X-ray diffraction patterns of Sn<sub>72-x</sub> Zn<sub>4</sub>Bi<sub>24</sub>X<sub>x</sub> (X=Ag, Al, Cu, Se and In and x=2 wt.%) rapidly solidified alloys have lines corresponding to sharp body-centered tetragonal lines of Sn phaserhombohedral Bi phase and rhombohedral SnBi intermetallic phaseas shown in Figure 1. X-ray diffraction analysis for  $Sn_{72,x}Zn_4Bi_{24}X_x$  alloys show that, they consisted of  $\beta$ -Sn phase, rhombohedralBi phase and rhombohedral SnBi intermetallic compound and that agreed with pervious results<sup>[32, 33]</sup>. That is mean Zn, Ag, Cu, In, Al and Se atoms dissolved in Sn matrix forming a solid solution with changingSn matrix microstructure of Sn<sub>72</sub>Zn<sub>4</sub>Bi<sub>24</sub>alloy such as crystallinity (which is related to intensity of the peak), crystal size (which is related to full width half maximum), and orientation (which is related to the position of the peak,  $2\theta$ ), after adding Ag, Cu, In, Al and Se contents. The details of x-ray analysis, (position, intensity, full width half maximum, area under the peak, miller indices), of  $Sn_{72-x}Zn_4Bi_{24}X_x$ (X=Ag, Al, Cu, Se and In and x=2 wt. %) alloys are seen in TABLE 1.

Lattice parameters, (a and c), and unit volume cell of  $\beta$ - Sn for used alloys were determined<sup>[34]</sup>. The maxima of the diffraction pattern are broadened by an amount inversely proportional to the crystal-lite size and measurement of the additional broadening thus gives a means of estimating the size through the formula given by Scherer equation<sup>[35]</sup>. TABLE 2 shows the calculated lattice parameters, (a and c),

unit volume cell and crystal size of body-centered tetragonal Sn phase in  $\text{Sn}_{72-x} \text{Zn}_4\text{Bi}_{24}X_x$  (X=Ag, Al, Cu, Se and In and x=2 wt. %) alloys. From these results, lattice parameters, unit cell volume and crystal size of  $\beta$ -Sn phase in  $\text{Sn}_{72}\text{Zn}_4\text{Bi}_{24}$  alloy changed after adding Ag, Cu, In, Al and Se contents. That is because Ag, Cu, In, Al and Seatoms dissolved in matrix alloy.

#### Scanning electron microscope

Scanning electron micrographs, SEM, of Sn<sub>72-x</sub> Zn<sub>4</sub>Bi<sub>24</sub>X<sub>x</sub> (X=Ag, Al, Cu, Se and In and x=2 wt. %) alloys are shown in Figure 2. SEM analysis of Sn<sub>72-x</sub>Zn<sub>4</sub>Bi<sub>24</sub>X<sub>x</sub> alloys showed considerable heterogeneity of micro-structure, which will relate to the formation of non-equilibrium phases. Three types of phases, (β-Sn phase) or (β-Sn phase, Bi phase and SnBi intermetallic compound), of various chemical compositions were detected, which was also proved by the x-ray analysis.

## **Thermal properties**

### Wettability

Wettability is quantitatively assessed by the contact angle formed at the solder substrate's flux triple point. The contact angles of  $Sn_{72-x}Zn_4Bi_{24}X_x$  (X=Ag, Al, Cu, Se and In and x=2 wt. %) alloys on pure Cu substrate are shown in TABLE 3. The results show that, adding Ag, Se and In content decreased contact angle of  $Sn_{72}Zn_4Bi_{24}$  alloy but Cu and Al increased it as seen in TABLE 3. The  $Sn_{70}Zn_4Bi_{24}Ag_2$  alloy has lower contact angle, good wetting on pure Cu substrate. The spreading of  $Sn_{72-x}Zn_4Bi_{24}X_x$  alloys on pure Cu at room temperature in air is shown Figure 3.

#### Melting point

The melting temperature is an important physical property and has a great influence on printed circuit board assembly. A promising solder alloy should have a lower melting temperature and a narrow pasty temperature zone. Figure 4 shows the DSC thermographs of  $Sn_{72-x}Zn_4Bi_{24}X_x$  (X=Ag, Al, Cu, Se and In and x=2 wt. %) alloys. The melting point of  $Sn_{72-x}Zn_4Bi_{24}X_x$  alloys is listed in TABLE 4. Thermographs, Exo-thermal peaks, of  $Sn_{72-x}Zn_4Bi_{24}X_x$  alloys have a variation in their shape. That means that,



MSAIJ, 13(1) 2015



 $\boldsymbol{C}$ 







 $\mathbf{C}$ 

Full Paper

| 20      | d Å     | Int. %          | FWHM                                                    | Area   | Phase | hkl |
|---------|---------|-----------------|---------------------------------------------------------|--------|-------|-----|
| 22.3835 | 3.972   | 1.76            | 0.2362                                                  | 16.72  | Bi    | 003 |
| 27.1831 | 3.28061 | 50.88           | 0.2558                                                  | 523.95 | Bi    | 012 |
| 30.5759 | 2.92387 | 100             | 0.3149                                                  | 1267.3 | Sn    | 200 |
| 31.8964 | 2.80577 | 57.57           | 0.2755                                                  | 638.41 | Sn    | 101 |
| 37.8527 | 2.37685 | 9.53            | 0.1378                                                  | 52.83  | Bi    | 104 |
| 39.6124 | 2.27523 | 10.33           | 0.1181                                                  | 49.11  | Bi    | 110 |
| 42.2635 | 2.13844 | 1.36            | 0.3149                                                  | 17.19  | SnBi  | 220 |
| 43.7577 | 2.06882 | 17.78           | 0.1574                                                  | 112.65 | Sn    | 220 |
| 44.8289 | 2.02185 | 35.65           | 0.2165                                                  | 310.57 | Sn    | 211 |
| 45.7656 | 1.98262 | 1.85            | 0.3542                                                  | 26.43  | Bi    | 006 |
| 48.8009 | 1.86617 | 3.8             | 0.2755                                                  | 42.15  | Bi    | 202 |
| 55.1669 | 1.66495 | 8.58            | 0.2755                                                  | 95.17  | SnBi  | 400 |
| 55.97   | 1.64295 | 3.1             | 0.3149                                                  | 39.24  | Bi    | 024 |
| 59.2821 | 1.55882 | 1.15            | 0.3936                                                  | 18.27  | Bi    | 107 |
| 62.367  | 1.48893 | 11.23           | 0.3542                                                  | 160.17 | Sn    | 112 |
| 63.5824 | 1.46336 | 5.41            | 0.2755                                                  | 59.94  | Sn    | 400 |
| 64.3671 | 1.44741 | 8.93            | 0.3542                                                  | 127.38 | Bi    | 122 |
| 70.9309 | 1.32872 | 1.77            | 0.3149                                                  | 22.44  | Bi    | 009 |
| 72.1565 | 1.30914 | 5.67            | 0.1968                                                  | 44.9   | Bi    | 300 |
| 72.9667 | 1.29659 | 4.86            | 0.1968                                                  | 38.49  | Sn    | 411 |
| 79.2838 | 1.20839 | 7.38            | 0.2362                                                  | 70.18  | Sn    | 312 |
| 89.1627 | 1.09741 | 3.19            | 0.288                                                   | 49.99  | Bi    | 306 |
|         |         | Sn <sub>7</sub> | $_{0}$ Zn <sub>4</sub> Bi <sub>24</sub> Al <sub>2</sub> |        |       |     |
| 22.3851 | 3.97172 | 2.76            | 0.4723                                                  | 9.41   | Bi    | 003 |
| 27.1708 | 3.28206 | 42.56           | 0.2558                                                  | 78.51  | Bi    | 012 |
| 30.5323 | 2.92794 | 91.94           | 0.2558                                                  | 169.62 | Sn    | 200 |
| 31.9437 | 2.80173 | 100             | 0.2952                                                  | 212.86 | Sn    | 101 |
| 36.2676 | 2.47701 | 9.3             | 0.1968                                                  | 13.2   | Zn    | 002 |
| 37.9393 | 2.37162 | 20.23           | 0.2558                                                  | 37.32  | Bi    | 104 |
| 39.6495 | 2.27318 | 15.69           | 0.2362                                                  | 26.72  | Bi    | 110 |
| 43.1893 | 2.09473 | 4.78            | 0.1968                                                  | 6.78   | Sn    | 220 |
| 43.7447 | 2.06941 | 32.95           | 0.2755                                                  | 65.47  | Sn    | 220 |
| 44.8019 | 2.023   | 77.78           | 0.3346                                                  | 187.64 | Sn    | 211 |
| 45.852  | 1.97909 | 3.62            | 0.3149                                                  | 8.22   | Bi    | 006 |
| 48.7499 | 1.868   | 8.17            | 0.1968                                                  | 11.59  | Bi    | 202 |
| 55.1497 | 1.66543 | 18.49           | 0.1968                                                  | 26.24  | SnBi  | 400 |
| 56.0701 | 1.64025 | 6.43            | 0.2952                                                  | 13.68  | Bi    | 024 |
| 59.3313 | 1.55764 | 2.35            | 0.3542                                                  | 6      | Bi    | 107 |
| 62.3533 | 1.48922 | 24.26           | 0.2165                                                  | 37.87  | Sn    | 112 |
| 63.5912 | 1.46318 | 10.44           | 0.2558                                                  | 19.25  | Sn    | 400 |
| 64.4047 | 1.44665 | 22.56           | 0.2558                                                  | 41.61  | Bi    | 122 |
| 67.3851 | 1.38974 | 1.58            | 0.4723                                                  | 5.36   | Sn    | 321 |
| 70.8621 | 1.32984 | 4.09            | 0.2362                                                  | 6.96   | Bi    | 009 |

TABLE 1 : x-ray diffraction analysis of  $Sn_{72-x}Zn_4X_x$  alloys $Sn_{70}Zn_4Bi_{24}Ag_2$ 



| 20      | d Å     | Int. %          | FWHM                                                          | Area   | Phase | hkl |
|---------|---------|-----------------|---------------------------------------------------------------|--------|-------|-----|
| 72.0817 | 1.31031 | 9.76            | 0.2165                                                        | 15.23  | Bi    | 300 |
| 72.8795 | 1.29792 | 9.91            | 0.2165                                                        | 15.46  | Sn    | 411 |
| 79.2731 | 1.20853 | 20.54           | 0.2165                                                        | 32.06  | Sn    | 312 |
| 85.0508 | 1.14058 | 1.64            | 0.7872                                                        | 9.29   | Sn    | 431 |
| 89.1625 | 1.09742 | 6.67            | 0.24                                                          | 15.61  | Bi    | 306 |
|         |         | Sn <sub>7</sub> | <sub>0</sub> Zn <sub>4</sub> Bi <sub>24</sub> Cu <sub>2</sub> |        |       |     |
| 22.4394 | 3.96223 | 5.43            | 0.1968                                                        | 22.42  | Bi    | 003 |
| 27.1136 | 3.28886 | 43.57           | 0.1574                                                        | 143.81 | Bi    | 012 |
| 30.5285 | 2.9283  | 98.17           | 0.1968                                                        | 404.99 | Sn    | 200 |
| 31.9153 | 2.80183 | 100             | 0.144                                                         | 408.01 | Sn    | 101 |
| 37.9955 | 2.36629 | 12.5            | 0.192                                                         | 68.02  | Bi    | 104 |
| 39.6155 | 2.27317 | 9.75            | 0.336                                                         | 92.8   | Bi    | 110 |
| 43.7217 | 2.06873 | 23.84           | 0.168                                                         | 113.49 | Sn    | 220 |
| 44.8283 | 2.0202  | 54.76           | 0.336                                                         | 521.31 | Sn    | 211 |
| 45.7753 | 1.98058 | 5.81            | 0.24                                                          | 39.53  | Bi    | 006 |
| 48.7362 | 1.86695 | 5.37            | 0.384                                                         | 58.41  | Bi    | 202 |
| 55.213  | 1.66229 | 13.07           | 0.336                                                         | 124.47 | Sn    | 301 |
| 56.0515 | 1.63939 | 3.65            | 0.432                                                         | 44.63  | Bi    | 024 |
| 59.2849 | 1.55746 | 2.54            | 0.384                                                         | 27.6   | Bi    | 107 |
| 62.365  | 1.48774 | 21.08           | 0.12                                                          | 71.68  | Sn    | 112 |
| 63.6222 | 1.46133 | 6.56            | 0.288                                                         | 53.5   | Sn    | 400 |
| 64.3966 | 1.44562 | 17.09           | 0.288                                                         | 139.46 | Bi    | 122 |
| 67.4156 | 1.38803 | 1.73            | 0.384                                                         | 18.85  | Sn    | 321 |
| 70.7805 | 1.33007 | 3.16            | 0.192                                                         | 17.21  | Bi    | 009 |
| 72.156  | 1.30806 | 9.07            | 0.24                                                          | 61.65  | Bi    | 300 |
| 72.9048 | 1.29646 | 8.11            | 0.288                                                         | 66.21  | Sn    | 411 |
| 79.2803 | 1.20743 | 13.46           | 0.288                                                         | 109.8  | Sn    | 312 |
| 85.0713 | 1.13941 | 1.39            | 0.96                                                          | 37.67  | Sn    | 431 |
| 89.0912 | 1.09811 | 5.36            | 0.288                                                         | 43.78  | Bi    | 306 |
|         |         | Sn <sub>7</sub> | $_{0}$ Zn <sub>4</sub> Bi <sub>24</sub> In <sub>2</sub>       |        |       |     |
| 22.4211 | 3.96543 | 4.06            | 0.1968                                                        | 25.76  | Bi    | 003 |
| 27.2342 | 3.27456 | 20.79           | 0.2558                                                        | 171.62 | Bi    | 012 |
| 30.5386 | 2.92735 | 100             | 0.2165                                                        | 698.35 | Sn    | 200 |
| 31.8934 | 2.80603 | 89.23           | 0.2558                                                        | 736.4  | Sn    | 101 |
| 38.0026 | 2.36782 | 8.94            | 0.2362                                                        | 68.12  | Bi    | 104 |
| 39.617  | 2.27497 | 6.1             | 0.1968                                                        | 38.73  | Bi    | 110 |
| 43.7321 | 2.06997 | 24.27           | 0.1574                                                        | 123.24 | Sn    | 220 |
| 44.7378 | 2.02575 | 47.39           | 0.1771                                                        | 270.78 | Sn    | 211 |
| 45.8019 | 1.98113 | 3.32            | 0.2362                                                        | 25.32  | Bi    | 006 |
| 48.7089 | 1.86948 | 2.89            | 0.2362                                                        | 22     | Bi    | 202 |
| 55.1586 | 1.66518 | 8.73            | 0.3149                                                        | 88.7   | SnBi  | 400 |
| 55.9715 | 1.64291 | 1.84            | 0.3149                                                        | 18.64  | Bi    | 024 |
| 59,2531 | 1.55951 | 1.21            | 0.3149                                                        | 12.27  | Bi    | 107 |
| 62.356  | 1.48916 | 12.98           | 0.1574                                                        | 65.93  | Sn    | 112 |
| 63 5815 | 1.46338 | 4.31            | 0.2755                                                        | 38.3   | Sn    | 400 |

Materials Science Au Indian Journal

|           |         |                 |                                                          |        | D [Fu]]] | Paper |
|-----------|---------|-----------------|----------------------------------------------------------|--------|----------|-------|
| 20        | d Å     | Int. %          | FWHM                                                     | Area   | Phase    | hkl   |
| 64.3349   | 1.44805 | 8.67            | 0.2362                                                   | 66.04  | Bi       | 122   |
| 70.8479   | 1.33007 | 1.11            | 0.2362                                                   | 8.44   | Bi       | 009   |
| 72.1955   | 1.30853 | 5.04            | 0.2362                                                   | 38.4   | Bi       | 300   |
| 72.9218   | 1.29727 | 4.97            | 0.1968                                                   | 31.55  | Sn       | 411   |
| 79.2867   | 1.20735 | 7.84            | 0.192                                                    | 65.6   | Sn       | 312   |
|           |         | Sn <sub>7</sub> | $_{70}$ Zn <sub>4</sub> Bi <sub>24</sub> Se <sub>2</sub> |        |          |       |
| 22.396    | 3.96981 | 2.1             | 0.2362                                                   | 13.53  | Bi       | 003   |
| 27.1618   | 3.28312 | 46.61           | 0.1574                                                   | 200.47 | Bi       | 012   |
| 30.5761   | 2.92385 | 100             | 0.1968                                                   | 537.57 | Sn       | 200   |
| 31.9332   | 2.80262 | 94.8            | 0.1771                                                   | 458.65 | Sn       | 101   |
| 37.8887   | 2.37468 | 13.61           | 0.1378                                                   | 51.2   | Bi       | 104   |
| 39.7178   | 2.26943 | 10.43           | 0.1378                                                   | 39.27  | Bi       | 101   |
| 43.7471   | 2.0693  | 21.74           | 0.1378                                                   | 81.81  | Sn       | 220   |
| 44.8162   | 2.02239 | 44.48           | 0.2165                                                   | 263    | Sn       | 211   |
| 45.8714   | 1.9783  | 2.41            | 0.3936                                                   | 25.94  | Sn       | 211   |
| 48.6857   | 1.87032 | 4.75            | 0.2755                                                   | 35.79  | Bi       | 202   |
| 55.1821   | 1.66452 | 9.98            | 0.2755                                                   | 75.14  | SnBi     | 400   |
| 56.0234   | 1.64151 | 3.19            | 0.1968                                                   | 17.13  | Sn       | 301   |
| 59.2185   | 1.56034 | 1.25            | 0.3149                                                   | 10.79  | Sn       | 301   |
| 62.4067   | 1.48808 | 15.03           | 0.1574                                                   | 64.65  | Sn       | 112   |
| 63.6114   | 1.46277 | 4.51            | 0.1968                                                   | 24.26  | Sn       | 400   |
| 64.3764   | 1.44722 | 10.39           | 0.2755                                                   | 78.21  | Sn       | 321   |
| 70.8403   | 1.33019 | 1.73            | 0.3149                                                   | 14.86  | Sn       | 420   |
| 72.1448   | 1.30932 | 4.69            | 0.2362                                                   | 30.24  | Sn       | 420   |
| 72.9676   | 1.29657 | 5.06            | 0.2362                                                   | 32.64  | Sn       | 411   |
| 79.2717   | 1.20854 | 7.49            | 0.1181                                                   | 24.17  | Sn       | 312   |
| 89.0772   | 1.09825 | 3.26            | 0.288                                                    | 34.62  | Sn       | 431   |
|           |         | S               | $n_{70}Zn_4Bi_{24}$                                      | -      |          | ·     |
| 22.3734   | 3.97377 | 1.81            | 0.4723                                                   | 12.11  | Bi       | 003   |
| 27.1373   | 3.28603 | 35.75           | 0.2558                                                   | 129.88 | Bi       | 012   |
| 30.5711   | 2.92432 | 100             | 0.2362                                                   | 335.39 | Sn       | 200   |
| 31.9498   | 2.80121 | 54.51           | 0.2952                                                   | 228.53 | Sn       | 101   |
| 37.9358   | 2.37183 | 9               | 0.1968                                                   | 25.16  | Bi       | 104   |
| 39.6705   | 2.27203 | 7.9             | 0.2165                                                   | 24.28  | Bi       | 110   |
| 43.7703   | 2.06826 | 14.11           | 0.3149                                                   | 63.09  | Sn       | 220   |
| 44.7494   | 2.02525 | 27.6            | 0.2755                                                   | 107.98 | Sn       | 211   |
| 45.8756   | 1.97812 | 2.21            | 0.433                                                    | 13.59  | Sn       | 211   |
| 48.7508   | 1.86797 | 3.55            | 0.2362                                                   | 11.90  | Bi       | 202   |
| 55.3215   | 1.66066 | 6.86            | 0.2952                                                   | 28.76  | Sn       | 301   |
| 56.0971   | 1.63953 | 2.37            | 0.2362                                                   | 7.96   | Sn       | 301   |
| 59.3233   | 1.55784 | 1.02            | 0.4723                                                   | 6.81   | Sn       | 301   |
| 62.397    | 1.48828 | 10.63           | 0.1771                                                   | 26.73  | Sn       | 112   |
| 63.6275   | 1.46243 | 3.87            | 0.1968                                                   | 10.81  | Sn       | 400   |
| 64.4167   | 1.44641 | 7.85            | 0.2362                                                   | 26.33  | Sn       | 321   |
| 67.39     | 1.38965 | 1.04            | 0.09                                                     | 1.35   | Sn       | 321   |
| 70.8298   | 1.33037 | 1.94            | 0.2755                                                   | 7.57   | Sn       | 420   |
| 72.2064   | 1.30836 | 5.08            | 0.3149                                                   | 22.70  | Sn       | 420   |
| 72.8958   | 1.29767 | 3.18            | 0.2165                                                   | 9.78   | Sn       | 411   |
| 79.2482   | 1.20884 | 59              | 0.2165                                                   | 18 15  | Sn       | 312   |
| 89 1636   | 1 09832 | 3 27            | 0 1968                                                   | 915    | Sn       | 431   |
| ~/···//// | 1.07034 | 2.41            | 0.1700                                                   | 1.10   | 511      | 1.51  |



\_\_\_\_



Figure 2 : SEM of Sn<sub>72-x</sub>Zn<sub>4</sub>Bi<sub>24</sub>X<sub>2</sub>alloys



Full Paper

| Alloys                                                           | τ(Å)    | a (Å)  | c (Å) | c/a   | V (Å <sup>3</sup> ) |
|------------------------------------------------------------------|---------|--------|-------|-------|---------------------|
| $\mathrm{Sn}_{72}\mathrm{Zn}_{4}\mathrm{Bi}_{24}$                | 327.611 | 5.8497 | 3.194 | 0.546 | 109.295             |
| $Sn_{70}Zn_4Bi_24In_2$                                           | 351.736 | 5.855  | 3.19  | 0.545 | 107.45              |
| $Sn_{70}Zn_4Bi_{24}Se_2$                                         | 370.836 | 5.853  | 3.192 | 0.545 | 107.32              |
| $Sn_{70}Zn_4Bi_{24}Ag_2$                                         | 306.202 | 5.852  | 3.194 | 0.546 | 107.201             |
| $Sn_{70}Zn_4Bi_2Al_2$                                            | 304.679 | 5.856  | 3.19  | 0.545 | 107.49              |
| $\mathrm{Sn}_{70}\mathrm{Zn}_{4}\mathrm{Bi}_{24}\mathrm{Cu}_{2}$ | 332.639 | 5.845  | 3.19  | 0.546 | 107.11              |

TABLE 2 : lattice parameters and particle size of  $Sn_{_{72-x}}Zn_{_4}\!X_{_x}$  alloys

#### TABLE 3 : contact angles of Sn<sub>72-x</sub>Zn<sub>4</sub>Bi<sub>24</sub>X<sub>x</sub>alloys

| Alloys                                                         | contact angle (θ) <sup>°</sup> |  |
|----------------------------------------------------------------|--------------------------------|--|
| $\mathrm{Sn}_{96}\mathrm{Zn}_{4}$                              | 23.5                           |  |
| $SnZn_4Bi_{24}$                                                | 29                             |  |
| $Sn_{70}Zn_4Bi_{24}\ Cu_2$                                     | 30                             |  |
| $\mathrm{Sn}_{70}\mathrm{Zn}_4\mathrm{Bi}_{24}\mathrm{Ag}_2$   | 26.5                           |  |
| $Sn_{70}Zn_4Bi_{24}$ Se <sub>2</sub>                           | 28                             |  |
| $\mathrm{Sn}_{70}\mathrm{Zn}_4\mathrm{Bi}_{24}\ \mathrm{Al}_2$ | 35.5                           |  |
| $Sn_{70}Zn_4Bi_{24}$ $In_2$                                    | 28                             |  |

| TABLE 4 | : | melting | points | of | Sn <sub>7</sub> , | <sub>"</sub> Zn | Bi, | <sub>A</sub> X <sub>alloys</sub> |
|---------|---|---------|--------|----|-------------------|-----------------|-----|----------------------------------|
|---------|---|---------|--------|----|-------------------|-----------------|-----|----------------------------------|

| Alloys                                             | Melting point °C |  |
|----------------------------------------------------|------------------|--|
| $\mathrm{Sn}_{96}\mathrm{Zn}_4$                    |                  |  |
| $\mathrm{SnZn}_4\mathrm{Bi}_{24}$                  | 173.25           |  |
| $SnZn_4Bi_{24}Al_2$                                | 170.38           |  |
| $\mathrm{SnZn}_{4}\mathrm{Bi}_{24}\mathrm{Se}_{2}$ | 171.42           |  |
| $SnZn_4Bi_{24}Cu_2$                                | 170.48           |  |
| $\mathrm{SnZn}_4\mathrm{Bi}_{24}\mathrm{In}_2$     | 168.23           |  |
| $SnZn_4Bi_{24}Ag_2$                                | 185.98           |  |

| TABLE 5 | : | electrical | resistivity | of | Sn <sub>72</sub> | Zn | ,Bi, | <sub>⊿</sub> X | allo | ys |
|---------|---|------------|-------------|----|------------------|----|------|----------------|------|----|
|---------|---|------------|-------------|----|------------------|----|------|----------------|------|----|

| Alloys                                                       | ρ x10 <sup>-8</sup> Ω <sup>-1</sup> .m <sup>-1</sup> |
|--------------------------------------------------------------|------------------------------------------------------|
| Sn <sub>96</sub> Zn <sub>4</sub>                             | 36.08                                                |
| $\mathrm{Sn}_{72}\mathrm{Zn}_4\mathrm{Bi}_{24}$              | 68.83±6                                              |
| $Sn_{70}Zn_4Bi_{24}In_2$                                     | 75.7±9                                               |
| $\mathrm{Sn}_{70}\mathrm{Zn}_4\mathrm{Bi}_{24}\mathrm{Se}_2$ | 52.48±5.6                                            |
| $\mathrm{Sn}_{70}\mathrm{Zn}_4\mathrm{Bi}_{24}\mathrm{Ag}_2$ | 54.3±7.5                                             |
| $Sn_{70}Zn_4Bi_{24}Al_2$                                     | 63.7±9                                               |
| $Sn_{70}Zn_4Bi_{24}Cu_2$                                     | 49.7±6                                               |

there is a change in alloys matrix structure caused after adding Ag, Cu, In, Al and Se contents to  $Sn_{72}$ Zn<sub>4</sub>Bi<sub>24</sub> which agrees with the results seen in x-ray analysis and scanning electron micrographs. The melting temperature of  $Sn_{72}$ Zn<sub>4</sub>Bi<sub>24</sub> alloy decreased after adding In, Cu, Al and Se contents. The  $Sn_{70}$ Zn<sub>4</sub>Bi<sub>24</sub>In<sub>2</sub> alloy has low melting point, 168°C, and it is lower than that the melting point of eutectic Sn-Pb solder alloy.

### **Electrical resistivity**

In general, the plastic deformation raises the electrical resistivity as a result of the increased number of electron scattering centers. Crystalline defects serve as scattering center for conduction electrons in metals, so the increase in their number raises the





| TABLE 6 : Elas                                                    | stic moduli, inte | rnal friction a | nd thermal di | ffusivity of Sn <sub>7</sub> | <sub>2-x</sub> Zn <sub>4</sub> Bi <sub>24</sub> X <sub>x</sub> alloys |
|-------------------------------------------------------------------|-------------------|-----------------|---------------|------------------------------|-----------------------------------------------------------------------|
| Alloys                                                            | E GPa             | B GPa           | GPaµ          | Q-1                          | D <sub>th</sub> x10 <sup>-4</sup> cm <sup>2</sup> /sec                |
| $\operatorname{Sn}_{72}\operatorname{Zn}_4\operatorname{Bi}_{24}$ | 27.43             | 30.15           | 10.17         | 0.041                        | 1.85                                                                  |
| $Sn_{70}Zn_4Bi_{24}In_2$                                          | 24                | 26.7            | 8.88          | 0.013                        | 2.52                                                                  |
| $Sn_{70}Zn_4Bi_{24}Ag_2$                                          | 39.4              | 43.4            | 14.6          | 0.023                        | 2.93                                                                  |
| $\mathrm{Sn}_{70}\mathrm{Zn}_{4}\mathrm{Bi}_{24}\mathrm{Cu}_{2}$  | 40.9              | 44.8            | 15.2          | 0.046                        | 2.03                                                                  |
| $Sn_{70}Zn_4Bi_{24}Se_2$                                          | 33.3              | 36.4            | 12.3          | 0.046                        | 2.06                                                                  |
| $Sn_{70}Zn_4Bi_{24}Al_2$                                          | 30.1              | 33.1            | 11.1          | 0.057                        | 1.25                                                                  |



Figure 5 : Resonance curves of Sn<sub>72-x</sub> Zn<sub>4</sub>Bi<sub>24</sub>X<sub>x</sub>alloys

| FABLE 7 : Corrosion current, corrosion potential and corrosion rate of Sn Zn Bi X allox |
|-----------------------------------------------------------------------------------------|
|-----------------------------------------------------------------------------------------|

| Alloys                             | I <sub>corr</sub> x10 <sup>-6</sup> A | E <sub>corr</sub> V | C.Rmpy |
|------------------------------------|---------------------------------------|---------------------|--------|
| SnZn <sub>4</sub> Bi <sub>24</sub> | 727                                   | -0.954              | 332    |
| $SnZn_4Bi_{24}Ag_2$                | 125                                   | -0.517              | 129.8  |
| $SnZn_4Bi_{24}Se_2$                | 1890                                  | -0.1000             | 1964   |
| $SnZn_4Bi_{24}Cu_2$                | 845                                   | -0.974              | 879.2  |
| $SnZn_4Bi_{24}Al_2$                | 154                                   | -0.838              | 160.3  |
| $SnZn_4Bi_{24}In_2$                | 6490                                  | -0.977              | 2967   |

imperfection. The measured electrical resistivity of  $Sn_{72,x}Zn_{4}Bi_{24}X_{x}$  (X=Ag, Al, Cu, Se and In and x=2 wt. %)alloys are listed in TABLE 5. Electrical resistivity of Sn<sub>72</sub> Zn<sub>4</sub>Bi<sub>24</sub> alloy decreased after adding Ag, Cu, Al and Se contents.

### **Elastic properties**

Materials Science

An Indian Journal

The elastic constants are directly related to atomic bonding and structure. It is also related to the atomic density. Elastic moduli of Sn<sub>72</sub> Zn<sub>4</sub>Bi<sub>24</sub> alloy increased afterAg, Cu, Al and Se contents as shown in TABLE 6. The resonance curves of  $Sn_{72-x}$  $Zn_ABi_{2A}X_x$  (X=Ag, Al, Cu, Se and In and x=2 wt. %) alloys are shown in Figure 5. Calculated Internal friction and thermal diffusivity are seen in TABLE 6. The results show that, internal friction value of Sn<sub>72</sub> Zn<sub>4</sub>Bi<sub>24</sub>alloy increased after adding Cu, Al and Se contents but it's decreased after adding In and Ag contents.

#### Electrochemical corrosion behavior

Figure 6 shows electrochemical polarization curves for  $Sn_{72,v}Zn_ABi_{2A}X_2$  (X=Cu, In, Ag, Se and Al) alloys in 0.5M HCl. From this Figure, the corrosion potential of these alloys exhibited a negative potential. Also, the cathodic and the anodic polarization



Full Padel



Figure 6 : Electrochemical polarization curves for  $Sn_{72\text{-}x}Zn_4Bi_{24}X_2alloys$ 



curves showed similar corrosion trends. The corrosion potential ( $E_{Corr}$ ), corrosion current ( $I_{Corr}$ ), and corrosion rate (C. R) of  $Sn_{72-x}Zn_4Bi_{24}X_2$  (X=Cu, In, Ag, Se and Al) alloys in 0.5M HCl are listed in TABLE 7. The results show that, corrosion parameters of  $Sn_{72}Zn_4Bi_{24}$  alloy changed after adding Cu, In, Ag, Se and Al contents. That is because adding Cu, In, Ag, Se and Alto  $Sn_{72}Zn_4Bi_{24}$  alloy caused microstructure changed which affected on microsegregation and the reactivity of formed phases and other atoms with HCl solution. The  $Sn_{70}Zn_4Bi_{24}Ag_2$  alloy has lower corrosion current ( $I_{Corr}$ ), and corrosion rate (C. R).

#### CONCLUSION

 $Sn_{72-x}Zn_4Bi_{24}X_x$ alloys consisted of  $\beta$ -Sn phase, rhombohedralBi phase and rhombohedral SnBi intermetallic compound. Also Zn, Ag, Cu, In, Al and Se atoms dissolved in Sn matrix of  $Sn_{72}Zn_4Bi_{24}$ alloychangingits microstructuresuch as forming a solid solution with changed crystallinity, crystal size, and orientation after adding Ag, Cu, In, Al and Se contents.

Electrical resistivity of  $Sn_{72} Zn_4Bi_{24}$  alloy decreased after adding Ag, Cu, Al and Se contents.

Elastic moduli of  $Sn_{72}Zn_4Bi_{24}$  alloy increased after Ag, Cu, Al and Se contents.

The  $Sn_{70}Zn_4Bi_{24}Ag_2$  alloy has lower corrosion current ( $I_{Corr}$ ), and corrosion rate (C. R).

Internal friction of  $Sn_{72}Zn_4Bi_{24}$ alloy increased after adding Cu, Al and Se contents but it's decreased after adding In and Ag contents.

The melting temperature of  $Sn_{72} Zn_4Bi_{24}$  alloy decreased after adding In, Cu, Al and Se contents. The  $Sn_{70}Zn_4Bi_{24}In_2$  alloy has low melting point, 168°C, and it is lower than that the melting point of eutectic Sn-Pb solder alloy.

Contact angle of  $Sn_{72} Zn_4Bi_{24}$  alloy decreased after adding Ag, Se and In contents but Cu and Al increased it. The  $Sn_{70}Zn_4Bi_{24}Ag_2$  alloy has lower contact angle, good wetting on pure Cu substrate.

#### REFERENCES

[1] A.El-bediwi, M.M.El-Bahay, M.Kamal;

Materials Science An Indian Journal Radia.Eff.Def.in Sol., 159, 491 (2004).

- [2] C.Yang, F.Chen, W.Gierlotka, S.Chen, K.Hsieh, L.Huang; Mater.Chem.Phys., 112, 94 (2008).
- [3] T.Takemoto, T.Funaki, A.Matsunawa; J.Jap.Weld.Soc., 17, 251 (1999).
- [4] C.M.L.Wu, D.Q.Yu, C.M.T.Law, L.Wang; Mater.Sci.Eng.: R: Reports, 44(1), 1 (2004).
- [5] Y Kariya, M.Otsuka; J.Electron.Mater, 27, 866 (1998).
- [6] W.J.Tomlinson, A.Fullylove; J.Mater.Sci., 27, 5777 (1992).
- [7] F.Ochoa, J.J.Williams, N.Chawla; J.Electron Mater., 32, 1414 (2003).
- [8] A.El-Bediwi, M.M.El-Bahay; Radia.Eff.Def.in Sol., 159, 133 (2004).
- [9] K.Kanlayasiri, M.Mongkolwongrojn, T.Ariga; J.of alloys, compounds, 485, 225 (2009).
- [10] M.S.Yeh; J.Electron.Mater., 30, 953 (2002).
- [11] S.P.Yu, C.L.Liao, M.C.Wang, M.H.Hon; J.Mater.Sci., 35, 1 (2001).
- [12] T.C.Chang, J.W.Wang, M.C.Wang, M.H.Hon; J.alloys & Comp., (2006).
- [13] D.R.Frear; j.Metals, 48(5), 49 (1996).
- [14] I.Artaki, A.M.Jackson, P.T.Vianco; J.Electron.Mater., 23(8), 757 (1994).
- [15] H.Oulfajrite, A.Sabbar, M.boulghallat, A.Touaiti, R.Lbibb, A.zrineh; Mater.Lett., 57, 4368 (2003).
- [16] W.K.Choi, H.M.Lee, J.Korean., Phys.Soc., 35, 340 (1999).
- [17] R.K.Shiue, L.W.Tsay, C.L.Lin, J.L.Ou; J.Mater.Sci., 38, 1269 (2003).
- [18] A.Miiyamoto, T.Ogawa, T.Ohsawa; Mater.Sci.Res.Inter., 9, 16 (2003).
- [19] A.B.El-Bediwi, M.El-Sayed, M.Kamal; Radia.Eff.Def.in Sol., 160(7), 297 (2005).
- [20] M.Mc Cormack, S.Jin, G.W.Kammlott, H.S.Chen; Appl.Phys.Lett., 63, 15 (1993).
- [21] Y.L.Tsai, W.S.Hwang; Material Science and Engineering A, 312, 413-414 (2005).
- [22] R.K.Shiue, L.W.Tsay, C.L.Lin, J.L.Ou; J.Mater.Sci., 38, 1269 (2003).
- [23] W.R.Osório, L.C.Peixoto, L.R.Garcia, N.M.Noël, A.Garcia; J.of Alloys and compounds, 572, 97 (2013).
- [24] J.Chriastelova, M.Ozvold; J.of alloys and compounds, 457, 323 (2008).
- [25] C.Yang, F.Chen, W.Gierlotka, S.Chen, K.Hsieh, L.Huang; Mater.Chem.Phys., 112, 94 (2008).
- [26] M.Kamal, S.Mazen, A.El-Bediwi, E.Kashita; Radia.Eff.Def.in Sol., 161, 143 (2006).

- [27] L.Zanga, Z.Yuan, H.Zhao, X.Zhang; Mater.Lett., 63, 2067 (2009).
- [28] J.N.Lalena, N.F.Dean, M.W.Weiser; J.Electronic Mater, 31, 11 (2002).
- [29] E.Schreiber, O.L.Anderson, N.Soga; "Elastic constant and their measurements", McGraw-Hill, New York, 82, (1973).
- [30] S.Timoshenko, J.N.Goddier; "Theory of elasticity, 2<sup>nd</sup> Edition", McGraw-Hill, New York, 277, (1951).
- [31] K.Nuttall; J.Inst.Met., 99, 266 (1971).
- [32] J.Zhou, Y.Sun, F.Xue; J.Alloys Compd., 397, 260 (2005).
- [33] S.W.Chen, C.H.Wang, S.K.Lin, C.N.Chiu; J.Mater.Sci.: Mater.Electron., 18, 19 (2007).

- [34] Tables for X-Ray Crystallography, 1, 15-21 (1952).[35] B.D.Cullity; "Element of x-ray diffraction" 10, 297
- (1959). [22] A. Malanata, S. Carra, Matar Sci. France, **27**, 05 (2000).
- [36] A.Mulugeta, S.Guna; Mater.Sci.Eng., 27, 95 (2000).
  [37] L.C.Prasad, A.Mikula; J.Alloys Compd., 282, 279
- (1999).
- [38] D.Soares, C.Vilarinho, J.Barbosa, R.Silva, F.Castro; IX conference on metallurgical science and technology, Madrid, November, 5-7 (2003); 1-Tables for X-Ray Crystallography, 1, 15-21 (1952); 2-B.D.Cullity "Element of x-ray diffraction", 10, 297 (1959).

