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INTRODUCTION

Convection in a thin, horizontal fluid layer heated from
below has been extensively studied during the last cen-
tury. For a pure fluid, if the temperature difference ap-
plied across the fluid layer T or the Rayleigh number R
that is proportional to T exceeds a certain threshold value
Tc or R

c
, the system undergoes a supercritical bifurca-

tion at onset of convection to stationary overturning con-
vection (SOC). However, for a binary fluid mixture such
as water ethanol, the Soret effect leads to an additional

control parameter besides the Rayleigh number R,
namely, the separation ratio , which measures the
stabilizing ( < 0) or destabilizing ( > 0) effect of
concentration gradients. Depending on , the system
which loses stability from a thermal conductive state
gives rise to a SOC state which is the analogue of a
pure fluid or to an oscillating convection state via a
subcritical bifurcation, as shown in Figure 1. For
negative values of , the system undergoes a Hopf
bifurcation at the onset of convection to a traveling
wave (TW) state. It then evolves to several kinds of
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fascinating patterns. The investigation on convection
flows in a horizontal layer heated from below has
mainly concentrated on experiments in a binary fluid
layer with  < 0 in the last several years[5,12].

On the side of numerical simulations, using realistic
no-slip, isothermal, impermeable lower and upper bound-
ary conditions as well as realistic no-slip, adiabatic, imper-
meable lateral boundary conditions, Yahata obtained the
counter propagating wave (CPW) and the localized trav-
eling wave (LTW) states in a rectangular cell for  = -0.11
by numerically solving perturbation equations which are
derived by the full hydrodynamic equations[15,16]. Using
the same boundary conditions on the lower and upper
plates in the cell as well as laterally periodic boundary
conditions at both ends, Barten et al. simulated the LTW
and the TW for  = -0.08 and  = -0.25 by using the
finite difference method for the full hydrodynamic equa-
tions[1-4]. Using the simulation of he full hydrodynamic
equations, we obtained the convective Patterns with de-
fects[13,14]. These efforts were crowned with success. Us-
ing nonlinear perturbation equations, we also simulated
the blinking traveling wave (BTW), LTW, double local-
ized traveling wave (DLTW) states and their formation
process[5-11]. However, up to now the study on the transi-
tion process of the traveling waves along the nonlinear
branch in a rectangular cell is still not reported. In this
paper our interest is focussed on the behavior in the tran-
sition of the TW convection patterns along the nonlinear
branch in a rectangular cell of  = 12 for  = -0.11. Our
numerical simulations have been performed by solving
the two-dimensional hydrodynamic equations using the
SIMPLE method.

THE GOVERNING EQUATIONS AND
THE SIMPLE METHOD

Hydrodynamic equations and boundary conditions

Here, we consider a binary fluid layer heated from
below under a homogeneous gravitational field, the flow
above the onset of convection takes the form of straight
rolls whose axes are parallel to two short side walls and
perpendicular to two long side walls. If the effect of two
long side walls or spatial variation along the roll axis is
neglected, let x and z denote the Cartesian coordinates
perpendicular to the roll axis with z directed upward.
Within the framework of the Oberbeck-Boussinesq ap-
proximations, if lengths are further scaled by the thick-
ness of the fluid layer d, time by d2 / k, the velocity field
by k / d, temperature by k / gd3, concentration by
k

2
 / gd3D, pressure by k2 / d2, the hydrodynamic

equations in dimensionless form can be written as
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Where u, T, C, , g, C
p
, t, , , D,  denote the velocity

vector, temperature, concentration, mass density, gravita-
tional acceleration, specific heat, time, thermal diffusivity,
kinemtic viscosity, concentration diffusion coefficient, chemi-
cal potential of the binary mixture respectively. 

T
 is the

coefficient relative to Dufour effect, T
0
 donates the mean

temperature below suffix 0 denotes the mean value corre-
sponding to the physical quantities. For small deviations of
T and C from the mean values T

0
 and C

0
, the equation of

the state of the mass density can be written as

 = 
0
 [1 - (T - T

0
) - (C - C

0
)] (5)

Where the thermal expansion coefficient at constant pres-
sure and concentration  and the solute expansion coeffi-
cient at constant temperature and pressure  are defined
as
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The Dufour number Q and the Lewis number L for
typical mixtures are about 10 times larger than in liquid
mixtures, and the Dufour contribution is for the same
fixed  about 10 times larger in gas mixtures than in liq-
uid mixtures. Thus in gas mixtures Q can not be neglected.
For the ethanol-water mixture, we shall neglect the Dufour
effect in the following discussion.

Boundary conditions and initial conditions

To solve the governing equations, it is necessary to
give reasonable boundary conditions. The walls are all rigid
for the velocities and impermeable for the concentration
current, that is
U = W =  / z = 0 at z = 0,1

U = W =  / x = 0 at x = 0,

While the temperature is isothermal at z = 0,1 and adia-
batic at x = 0,, so that
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T = 0.5 at z = 0

T = -0.5 at z = 1

T / x = 0 at x = 0,

The initial conditions are set by assuming that the
flow takes the form of parallel rolls whose
wavelength is just twice the thickness of the fluid
layer and the initial rolls have small-amplitude
envelopes which follows the shape of a Gaussian
function whose peak is slightly asymmetrical.

Conductive solution

To simulate TW convection, we have solved the gov-
erning equations (1)-(4) by using the SIMPLE method.
For this system, the conductive solutions can be written as

U
cond

 = 0 (8)

T
cond

 = 0.5 - z (9)

C
cond

 = (0.5 - z) (10)


cond

 = 0 (11)

(p / 
0
)

cond
 = 0.5 Pr R(1 + )(0.5 - z)2 (12)

Numerical method

The SIMPLE algorithm was used to numerically solve
the governing equations consisting of the coupled heat
and concentration transfer and fluid flows. The govern-
ing equations were solved in primitive variables in a two-
dimensional staggered grids with an uniform spatial reso-
lution x = z = 1/20 based on the control (finite) vol-
ume method. The power law scheme was used to treat
the convective-diffusive terms in the discrete formula-
tion. The discrete equations were solved by an iterative
tri-diagonal matrix algorithm (TDMA). The time step t
used in all calculations was 0.01, which represents 1% of
the vertical relaxation time d2 /.

SIMULATIONAL RESULTS

Here we discuss the bifurcation behavior of the TW
states in a rectangular cell in a binary mixture for  = -
0.11, L = 0.015, Pr = 18. The conductive state loses its
stability at the onset r

osc
. Figure 1 displays the r-depen-

dence of the Nusselt number N-1 and the amplitude of
convection, where convection patterns depend on r, where
r is a reduce Rayleigh number, r = R/R

co
, R and R

co
 (=

1708) are a Rayleigh number and Rayleigh number at the
onset of convection for pure fluid. Above the onset r

osc
,

the system evolves into the nonlinear TW state with a large
amplitude. For our given parameters, the onset of the
oscillatory instability is equal to 1.17. When r exceeds 1.17,
a transient counter-propagating wave (CPW) is obtained.
Figure 2 shows the counter-propagating wave state at r =
1.2. When we decrease r from 1.15 to 1.14 along the

upper nonlinear branch, the TW state loses its stability.
For r > 1.15, the TW state is stable. It persists over the
range of 1.15 < r < 1.26.

If r exceeds 1.26, an undulation TW appears in
the system. Let us now consider the dynamical behavior
in detail. When r is increased from 1.15 to 1.26, the
traveling wave always maintain the identical direction
of propagation and move to the right with the phase
velocity, which decreases with an increase of r. When
r is increased to 1.28, however, the right-going TW
reverses the direction of propagation and begins to
move to the left near t = 10. The TW states with the
propagating direction of this type of �S� have been

Figure 1 : Bifurcation diagrams of binary fluid convection in
a rectangular cell ( = 12). The TW solution branch bifur-
cates backwards at r

osc
 = 1.162, and exists over the range from

r = 1.145 to r = 1.26. The SOC is stable above r
osc

 = 1.30, and the
undulation TW is located over the range r = 1.26 to r = 1.30.
Upper figure: Nusselt number; lower figure: amplitude.

called as the undulation TW states. With further
increasing r, the system evolves into the SOC state
above r = 1.30, as shown in Figure 1.

Figure 3 The transition to the LTW, where the
computation is continued from the final state at r =
1.2 after r has slightly decreased to 1.181. Figure 4
Time evolution of the stream function  in the LTW
state at r = 1.183. Each block represents an isopleth of
 in the space(x,z), where the red and the black lines
correspond to the positive and negative values of 
respectively. Time proceeds in the upward direction,
and the time interval between two successive blocks is
t = 8( / d2).

Let us now try to understand the structure of the
TW and the SOC states. Figures 5, 6 display the struc-
ture of the TW at r = 1.15 near the saddle of bifurca-
tion branch and the structure of the SOC state at r =
1.3. Both velocity and temperature fields look like those
in a pure fluid, but in the binary fluid mixture, the tem-
perature field is slightly phase shifted relative to the ver-
tical velocity field. The streamlines also are similar to
those in a pure fluid. The velocity, temperature and
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Figure 2 : Time evolution of the perturbation temperature
field  at r = 1.2, where the CPW is located near the center of
the cell. Each block represents an isopleth of  in the
space(x,z), where the red and the black lines correspond to
the positive and negative values of  respectively. Time pro-
ceeds in the upward direction, and the time interval between
two successive blocks is t = 0.25( / d2).

Figure 3 : The transition to the LTW, where the computation
is continued from the final state at r = 1.2 after r has slightly
decreased to 1.181. Time proceeds in the upward direction,
and the time interval between the two successive blocks is t
= 8( / d2).

Figure 4 : Time evolution of the stream function  in the
LTW state at r = 1.183. Each block represents an isopleth of
 in the space(x,z), where the red and the black lines corre-
spond to the positive and negative values of  respectively.
Time proceeds in the upward direction, and the time inter-
val between two successive blocks is t = 8( / d2).

Figure 5 : The spatial patterns of the TW propagating to the
right near the saddle of the bifurcation diagram at r = 1.19.
(a) Vertical component of the velocity, (b) temperature T, (c)
concentration C, (d) streamline, (e) side view shadowgraph
intensities I(x,z).
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streamline all are mirror symmetric around the
centerline of rolls. The plume structure of the
concentration fields in the TW state shown in figure
5. is different from that in SOC state shown in Figure
6. The plume in the SOC state locates at the position
of maximal up and down flow, and is mirror sym-
metric. While in an TW state, the concentration jets
alternatingly feed only the left or right turning rolls.
The plumes are strongly bent into the respective rolls,
and the resulting fine structure of concentration. The
property of the sideview shadowgraph intensities in
the TW state is different from that in the SOC state.
In the SOC state Figure 6, the rolls constructed by
contours of sideview shadowgraph intensities are
mirror symmetry around the centerline of rolls.
However, in the TW state, the contours of sideview
shadowgraph intensities are bent and mirror symmetry
around the centerline of rolls breaks due to an TW. It
should been pointed out that the contours of the sideview
shadowgraph intensities character the state of binary fluid
convection as the concentration field.

CONCLUSION

To reveal the behavior in the transition of the con-
vection patterns along the nonlinear branch of binary fluid
convection confined in the rectangular cell with  = 12
for  = -0.11, we have solved the two-dimensional full
hydrodynamic equations by using the SIMPLE method.

Our simulation has reproduced the nonlinear phe-
nomena observed in experiments such as traveling wave

Figure 6 : The spatial of the SOC state at r = 1.35. (a) Vertical
component of the velocity, (b) temperature T, (c) concentra-
tion C, (d) streamline, (e) side view shadowgraph intensities
I(x, z).

(TW), counter-propagating wave (CPW), localized
traveling wave (LTW), undulation traveling wave
(UTW) and stationary overturning convection (SOC)
states appearing in the nonlinear branch of the
subcritical bifurcation diagram.
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