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ABSTRACT 
 
The dynamic model of a two-degree-of-freedom system with a rigid stop is considered.
The multi-impact motions of the one excitation period, subharmonic motions and
chattering-impact characteristics of the system are analyzed by Runge-Kutta numerical
simulation algorithm, and furthermore the saddle-node and grazing bifurcations between
p/1 motions are revealed exactly. The research results show that a series of grazing
bifurcations occur with decreasing frequency so that the impact number p of p/1 motions
correspondingly increases one by one, a series of saddle-node bifurcations occur with
increasing frequency so that the impact number p of p/1 motions correspondingly
decreases one by one and there exists frequency hysteresis range and multiple coexistence
attractors between p/1 and (p+1)/1 motions. In the low exciting frequency case, the impact
number p of p/1 motions becomes big enough and chattering-impact characteristics will
be appearing. The transition law from 1/1 motion to chattering-impact motion is
summarized explicitly. 
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INTRODUCTION 
 

 The rigid stop that can display rich and complex nonlinear responses exists extensively in mechanical vibro-impact 
systems. Such non-smooth nonlinear systems are capable of exhibiting classically nonlinear behaviour such as coexistence 
attractors, period-doubling and grazing bifurcations. For example, impact dampers, pile drivers, etc., is based on the impact 
action for moving bodies. With other equipment, e.g., mechanisms with clearances and barriers, gears, wheel-rail interaction 
of railway coaches, etc., impacts also occur, but they are detrimental as they bring about increased wear and impulsive noise. 
It is necessary to be able accurately to model the dynamics of mechanical systems with rigid stops and clearances, so as to 
enlarge profitable effects and weaken adverse effects. The near-grazing impacting behaviours such as multi-periodic orbits, 
subharmonic resonances and chaos in discontinuous dynamical systems has been reflected by amount of researchers in the 
past several years. Shaw and Holmes[1] analyzed a single-degree-of-freedom vibro-impact system by using the traditional 
approaches for demonstrating periodic-impact phenomena in the system. The results revealed all types of typical nonlinear 
behaviours: saddle-node and flip bifurcations, multiple coexisting attractors and chaos, etc. Nordmark[2] developed the 
discontinuity mapping method for investigating grazing dynamics and attendant bifurcations of the piecewise linear and 
vibro-impact systems. Ref.[3] focused on the grazing transitions from no impact to impact motion and investigated parameter 
space regions around the grazing bifurcations. Chin et al.[4] numerically generated three basic bifurcation scenarios such as 
reversed period adding cascade, hysteresis and period-M maximal orbit by using Nordmark map. Ref.[5] provides a 
comprehensive investigation of grazing motions in the dry-friction oscillator for a better understanding of the grazing 
mechanism of a discontinuous system. Experimental model of a base excited symmetrically piecewise linear oscillator was 
performed by Sin and Wiercigroch[6]. Luo[7,8] presented an idealized, piecewise linear system to model non-smooth vibration 
of gear transmission and studied the impact behaviour between the gear teeth. For example, in wheel-rail impacts of railway 
coaches[9], Jeffcott rotor with bearing clearance[10], gears transmissions[11], small vibro-impact pile driver[12], etc., impacting 
models have proved to be useful. Giusepponi et al.[13] demonstrated the chattering dynamics of an inelastic ball bouncing on 
the vibrating table. Ref.[14] studied the chattering sequence and correlative relationship between dynamic performance and 
system parameters of a two-degree-of-freedom periodically-forced system with a clearance. 
 A periodically-forced system with a rigid stop and clearance is established. The main purpose of the present study is 
to analyze the nonlinear characteristics of such system, including grazing and period doubling bifurcations, subharmonic 
motions, coexistence attractors, etc. A series of grazing bifurcations occurs with decreasing frequency so that the impact 
number p of p/1 motions correspondingly increases one by one, a series of saddle-node bifurcations occur with increasing 
frequency so that the impact number p of p/1 motions correspondingly decreases one by one and there exists frequency 
hysteresis and multiple coexistence attractors between p/1 and (p+1)/1 motions. In the low exciting frequency case, the 
impact number p of p/1 motions becomes big enough and chattering-impact characteristics will be appearing. The transition 
law from 1/1 motion to chattering-impact motion is summarized explicitly. 

 
MECHANICAL MODEL 

 
 The mechanical model of a two-degree-of freedom system with a rigid stop is shown in Figure 1. Displacements of 
the masses 1M  and 2M  are described by 1X  and 2X , respectively. The masses 1M and 2M are connected by linear spring 
with stiffness 1K  and linear viscous dashpot with damping constant 1C . The mass 2M  is attached to the supporting baseby 
the linear spring with stiffness 2K  and linear viscous dashpot with damping constant 2C . The excitations on massesare 
harmonic with amplitudes 1P  and 2P . Ω  is the excitation frequency, and τ  is the phase angle. The mass 1M begins to hit the 
rigid stop when the displacement 1X  of mass 1M  equals the clearance B , i.e. BtX =)(1 . The impact is described by a 
coefficient of restitutionR. 

 

 
 

Figure 1 : Mechanical model of a periodic forced system with a rigid stop. 
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 The motion processes of the system when the absolute value of displacement 1X  is less than the clearance are 
considered. The condition of the periodic forced system, just immediately after impact, has become initial conditions in the 
subsequent process of the motion. The non-dimensional differential equations of motion are given by Equation (1). 
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(1) 

 
 A sudden change of velocity of the mass 1M occurs immediately after the impact, which is determined by Newton’s 
hypothesis, i.e., 
 

)(, 111 δ=−= −+ xxRx &&  (2) 
 
where the subscript signs “-” and “+” denotethe states just before and after the impact, respectively. 
 The non-dimensional quantities of Equation (1) are given by 
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 Periodic-impact motions of the system are described by the symbol p/n, where n denotes the number of excitation 
periods and p denotes the number of impacts with the rigid stop, during one impact motion period, respectively. In order to 
establish the Poincaré map of the periodic forced system, we chose the Poincaré section: { ∈= ),,,,( 2211 txxxxp &&σ ,4 SR ×

,1 δ=x }−= 11 xx && . The disturbed map of 1/n motion is represented briefly by 
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 The Poincaré section ),,,,{( 2211 txxxxn &&=σ ×∈ 4R pxx 11, =×S , )}π2mod( ω=t is also considered to construct the 
other map. Consequently, the number p and n of p/n motion can be determined easily by the Poincaré map pσ  and nσ  
respectively. 

 
CHARACTERISTIC AND TRANSITION LAW OF CHATTERING-IMPACT MOTIONS 

 
 The existence and stability of p/1and chattering-impact motionsis analyzed explicitly. Grazing bifurcations at the 
boundary of p/1 motions with decreasing frequency are considered. Particularly, the grazing bifurcation series from 4/1 orbit 
to5/1 orbit is interrupted and there exists different kinds of periodic motions such as 8/2, 7/2, 10/3, 13/4,etc. 
 Taking dimensionless parameters (1): =mμ 0.67, =kμ 0.84, =cμ 0.80, =ζ 0.10, =20f 0.00, =δ 0.77 and =R
0.80, we analyze the nonlinear dynamic performances of the two-degree-freedom periodically forced system with a rigid 
stop.The global bifurcations of the rigid stop system, in the form of projected Poincaré section pσ , is shown for ω  varying 
in the range [0.2, 0.8], see Figure 2. The sign Gp/1 denotes the grazing bifurcation boundary of p/1 to (p+1)/1 periodic orbit. 
Figure 3 is the detail local bifurcations of Figure 2. It is shown that the system exhibits stable 1/1 motion with ∈ω [0.6646, 
0.8]. When the frequencyω  is decreased to cω =0.6646, the mass 1M  begins to touch the rigid stop with zero velocity and 
the grazing bifurcation occurs, the 1/1 motion has changed its stability so that the impact number p increases oneand the 2/1 
impact motion is born. The stable 2/1 motion exists in the frequency interval ∈ω (0.4576,0.6646). As ω  passes through cω
=0.4576 decreasingly, grazing bifurcation associated with themotion occurs and the stable 3/1 motion takes place after the 
grazing bifurcation immediately. Figure 4 shows the 1/1 motion with grazing contact for =cω 0.6646 and Figure 5 shows the 
2/1 motion with grazing contact for =cω 0.4576. From Figure 3, several frequency windows of chaos and periodic motion 
exist analogously, such as 13/4, 10/3, 7/2, 8/2, etc. For example, the 10/3 motion turns into chaos from grazing bifurcation 
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with decreasing frequency and then a sequence of inverse period-doubling bifurcations appears. The 7/2 motion fall into 
chaos and then 4/1 fundamental motion is born via the inverse period-doubling bifurcations. 

 

 
 

Figure 2 : Bifurcation diagram with decreasing frequency ω . 
 

 
 

a) 

 
 

b) 
 

Figure 3 : Details of Figure 2: a) Bifurcation diagram of Poincaré map pσ , b) Bifurcation diagram of Poincaré map 

nσ . 
 

 
 

Figure 4 : Phase portrait of 1/1 motion with grazing contact, ω =0.6646. 
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Figure 5 : Phase portrait of 2/1 motion with grazing contact, ω =0.4576. 
 

 A series of grazing bifurcations occurs with decreasing the frequency ω  so that the number p of impacts of p/1 
motions increases one by one. As p becomes big enough, the p/1 motion exhibits chattering-impact characteristics. The lower 
the frequency ω  is, the more the impact number p is. Consequently, the transition law from 1/1 motion to chattering-impact 
motion is summarized as follows 
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where the symbol 1/p denote the chatting-impact motion with sticking and 1/~p represent the chattering-impact 
motionwithout sticking, S Bif and G Bif represent sliding and grazing bifurcations, respectively. Figure 6 shows the time 
series of 3/1, 5/1 and chattering-impact motion. 

 

 
 

a) 

 
 

b) 

 
 

c) 
 

Figure 6 : Time series of: a) 3/1 motion, ω =0.42, b) 5/1 motion, ω =0.28, c) chattering-impact motion, ω =0.22. 
 

SUBHARMONIC MOTIONS 
 

 Taking dimensionless parameters (2): =mμ 0.67, =kμ 0.84, =cμ 0.80, =ζ 0.10, =20f 0.00, =ω 0.82 and =R
0.80, we analyze the nonlinear dynamic performances of the rigid stop system with decreasing the clearance δ . The global 
bifurcations of the rigid stop system, in the form of projected Poincaré section pσ  and nσ , is shown for δ  varying in the 
range [2.0,5.6], see Figure 7. 
 The 1/n subharmonic motions (n=1, 2, 3, 4, 5) are easily demonstrated by Figure 7. This is the period adding 
cascade referred in Ref.[4]. The chaos motions appears via the grazing bifurcation of 1/n motion and the 1/(n-1) subharmonic 
motion occurs through the reversed period doubling bifurcation from chaos with increasing the clearance δ . However, we 
can note that existence windows of 2/2nmotions (n=1, 2, 3, 4, 5) are too small to be observed. In Figure 8, the phase portrait 
1/3orbit with grazing contact is shown at =δ 4.45. The chaos via the grazing bifurcation of 1/3 motion is depicted bythe 
phase portrait shown in Figure 9. 
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a) 

 
 

b) 
 

Figure 7 : Bifurcation diagrams with decreasing clearance δ : a) Diagram of Poincaré map pσ , b) Diagram of 
Poincaré map nσ  

 

 
 

Figure 8 : Phase portrait of 1/3 subharmonic motion with grazing contact, δ =4.45. 
 

 
 

Figure 9 : Phase portrait of chaos, δ =4.449. 
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COEXISTENCE ATTRACTORS 
 

 Taking dimensionless parameters (1), the global bifurcation diagrams of the rigid stop system, in the form of 
projected Poincaré section pσ , are shown with increasing or decreasing frequencyω  varying in the range [0.2,0.8], as seen 
in Figure 10. The sign SNp/1 and FH(p-1)/1 denotes the saddle-node bifurcation boundary and frequency hysteresis range of p/1 
orbit to (p-1)/1 orbit. Forthe sakeofexhibition, the global bifurcation diagrams with increasing or decreasing frequencyω
were plotted in the same diagram. 
 Saddle-node bifurcations at the boundary of p/1 motions with increasing frequency are considered. On the boundary 
SNp/1, one of impacts of the motion disappears and (p-1)/1 motion occurs after a jump transition. A narrower frequency 
hysteresis range exists between grazing boundary of p/1 motion and saddle-node bifurcation boundary of (p+1)/1 motion, as 
seen in Figure 10. There coexist both stable p/1 and (p+1)/1 motions in the dependence on different initial conditions or on 
the way of the system parameters change in thefrequency hysteresis ranges. Figure 11 shows the coexistence periodic orbits 
of 1/1 motion and 2/1 motion in the frquency hysteresis range FH1/1 at ω =0.67. Figure 12 shows the coexistence periodic 
orbits of 2/1 motion and 3/1 motion in another frquency hysteresis range FH2/1 at ω =0.4577. 

 

 
 

Figure 10 : Diagram of frequency hysteresis range of the saddle-node bifurcations. 
 

 
 

a) 

 
 

b) 
 

Figure 11 : Phase portraits of coexistence attractors, ω =0.67: a) Phase portrait of 1/1 motion, b) Phase portrait of 2/1 
motion. 
 



BTAIJ, 10(23) 2014  Xifeng Zhu  14547 

 
 

a) 

 
 

b) 
 

Figure 12 : Phase portraits of coexistence attractors, ω =0.4577: a) Phase portrait of 2/1 motion, b) Phase portrait of 
3/1 motion. 

 
CONCLUSIONS 

 
 In this paper, the mechanical model and two different Poincaré maps of the period-forced system with a rigid stop 
were established. The nonlinear characteristics of the systemwereanalyzed with special attention to grazing bifurcation, 
saddle-node bifurcation,subharmonic motions, chattering-impact motions and coexistence attractors, etc. 
 (1). A series of grazing bifurcations occur with decreasing frequency so that the impact number p of p/1 motions 
correspondingly increases one by one. In the low exciting frequency case, the impact number p of p/1 motions becomes big 
enough and chattering-impact characteristics will be appearing. The transition law from 1/1 motion to chattering-impact 
motion is summarized explicitly. 
 (2). Particularly, several p/1 fundamental motion sequence with decreasing frequency is interrupted by the grazing 
bifurcations, chaos and reverse period-doubling bifurcations, there exists different kinds of periodic motions in the specific 
frequency windows, such as 8/2, 7/2, 10/3, 13/4,etc. 
 (3). A series of saddle-node bifurcations occur with increasing frequency so that the impact number p of p/1 motions 
correspondingly decreases one by one and there exist frequency hysteresis ranges and multiple coexistence attractors between 
p/1 and (p+1)/1 motions. 
 (4). The subharmonic motions and period adding cascade was numerically generated by choosing special system 
parameters. 
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