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ABSTRACT 
 
Wildfires are severe natural disasters and environmental problems. This paper describes a
methodology for constructing a dynamic decision model which aims to support the human
expert's decision making in fire containment. The main idea is based on Markov decision
processes (MDP) which can handle the uncertainty and dynamic features of decision
making problems. In order to apply MDP to large scale real world problems, we use a
factored manner to describe and formulate the dynamic decision model. This helps the
problem expression and solution, and the policy generated by the model is explicit and
specific actions of wildfire suppression measures which is easily understood by human
decision makers. Furthermore, we simulate two scenarios and verify the decision effects
solved by the model. The results reveal that our model has prominent performance on
wildfire containment and deals with multi-objective decision problems easily and
intrinsically. 
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INTRODUCTION 
 
 Wildfire is one of the severest natural disasters on the planet, which cause significant loss of life and property and 
have enormous environmental effects on ecosystems. In recent years, wildfire activities are increasing due to global climate 
change, requiring more effective containment of wildfires to protect the society and public safety. 
 It is quite difficult to predict wildfires in space and time, which makes efficient decision about mitigation efforts a 
great challenge, particularly during the dynamic response period to the wildfires[1]. Therefore, the ability to predict wildfire 
location and behavior is the key point for an effective wildfire initial response. Furthermore, faster and precisely prediction of 
fire behavior and suppression measures would help fire containment planning and limit the damage of wildfires. 
 The most effective way of predicting fire spread and reducing risk is through modeling and simulation[2]. There are 
extensive literatures on wildfire modeling and simulation, including mathematical models of fire spread[3], fire simulation on 
a specific region[4, 5], firefighting resources allocation[1]. However, most of the existing researches are rarely relevant to 
dynamic response to wildfires in a unified and mathematical framework. 
 In this article, we apply Markov decision process (MDP) to model the Dynamic response process of wildfire 
containment, combining fire spread simulation and suppression measure in a unified, dynamic, and mathematical framework. 
First, we describe the states of the wildfire in a factored manner. Then we map the fire spread law into a transition function 
probabilistically. Moreover, we define abstract fire suppression measures and design reward function according to decision 
objectives. Finally, we apply the dynamic decision model to specific scenarios representing wildfire fighting decision 
situations, and verify the decision effectiveness of the model. 
 

METHODOLOGY 
 
 MDP provides a mathematical framework for modeling dynamic and probabilistic decision making problems. An 
MDP can be defined as a tuple [6], where 
  is a set of states. 
  is a set of actions. 
  is a transition function, a mapping specifying the probability  of going into state  if action  is 
executed when the current state is . 
  is a reward function that gives a finite numeric reward value  obtained when the system goes from 
state  to state  as a result of executing action . 
 Here, it should be noted that the time element is implicit in this kind of expression. Since most of wildfires response 
would be finished at fixed time, we can enumerate the time steps as t=1,2,…,Tend. 
 In order to apply MDP framework to wildfire containment, we need to specify each element of MDP according to 
the knowledge of wildfires spread and suppression. Although defining an MDP takes just a few lines of text, describing an 
MDP instance in enumerative way would require exponential space with the increasing magnitude of problems[7]. Therefore, 
we use a more compact way, factoring the state space into constituent variables, to describe our model. The steps for building 
a dynamic decision model for wildfire containment are listed as below. 
 
Define the states 
 A wild land region can be represented as a two-dimensional cell space composed of cells of dimensions m × n, 
where m and n are the length and width of the region respectively. And each cell of the whole region can be identified by its 
location or coordination. For example, if we set two axes for the region as  and , then any 
cell of the region is marked with , where  and . Each cell can be associated with one of three 
states: unburned, burning, and burned. An unburned cell can catch fire to enter the burning state and will eventually die out, 
becoming burned. The decision situation here does not allow for regrowth of a burned cell, so these state transitions proceed 
in one direction only. We use two binary variables, which are whether a cell is on fire (defined by ) and whether the 
combustible materials of a cell has burned down (defined by ), together to represent the above three states (see Table 
1). 
 

TABLE 1: States representation 
 

state
unburned 0 0 
burning 1 1 
burned 0 1

  
Determine the state transition function. 
 Wildfire progression is driven by inherently complex, interconnected, physical processes, involving a variety of 
factors, including weather, vegetation, and terrain[8, 9] To focus on our research essence- dynamic response to wildfire, we 
simply assume that each individual cell has uniform weather, vegetation, and topographical conditions, and different cells can 
have different factors. 
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Figure 1: Moore neighborhood of a cell 

 
 To simulate the wildfire spread through the cells of the region, we define neighborhood of each cell. Here we use 
Moore neighbourhood (see figure 1.). Each cell has at most eight neighbors (except for cells on the corner or edge of the 
region). We describe this neighborhood in a factored manner as North(xi1, yj1, xi2, yj2), South(xi1, yj1, xi2, yj2), East(xi1, yj1, xi2, yj2), 
West(xi1, yj1, xi2, yj2), Northeast(xi1, yj1, xi2, yj2), Northwest(xi1, yj1, xi2, yj2), Southeast(xi1, yj1, xi2, yj2), Southwest(xi1, yj1, xi2, yj2), and 
then we have 
 

. 
 
 Since the definitions of South, East, and other neighbor relationships are similar to the North definition, we do not 
enumerate them respectively. 
 The fire can spread from burning cells to unburned cells over the temporal progression of fire contagion. The state 
of a cell at time step t+1 is determined by a function of the state itself and the states of its neighbor cells at time step t. To 
describe the state transition rule of each cell between consecutive time steps, we define a basic transmissibility v, to be the 
average probability that a burning cell will ignite the unburned cell in its neighborhood. Then the transition probability for an 
unburned cell is the sum over the transmissibility of all its neighbor cells. Since the diagonal cells are farther than adjacent 
ones to the central cell, the transmissibility is modified by a factor of . Moreover, we have to consider the influence 
factors of wildfires, including weather, vegetation, and terrain. The most important weather factor that affects forest fire 
spreading is the wind speed and direction[10]. We can incorporate wind factor by assigning a weight to the corresponding 
neighbor relationship due to the wind speed and direction. For example, if the wind is blowing from west to east, then the 
transmissibility for East(xi1, yj1, xi2, yj2), West(xi1, yj1, xi2, yj2), Northeast(xi1, yj1, xi2, yj2), Southeast(xi1, yj1, xi2, yj2),  would be , 

, , and , where  is unburned cell, , and . The transmissibility for 
other neighbor relationships do not affect by the wind, so their weights are set to 1. Vegetation can be considered as fuel of 
each cell, and the speed of spread for cells varies with the different types of fuel. Each type of combustible material is 
assigned a weight to demonstrate how fast the fires spread across cells with different fuels, denoted as . If the cell has no 
combustible material (like rocks), then . For terrain factor, the height differences between cells greatly affect the 
forest fire spreading. It is common that fires show a higher rate of spread when they climb up an upward slope, whereas fires 
show a smaller rate of spread when they descend a downward slope[11]. Referred to wind factor, we assign weights to the 
transmissibility about height for various neighbor relationships according to the topography of the wild land region, denoted 
as , , and etc. Finally, we have a comprehensive transition probability for unburned cell  by integrating all 
above factors,  
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 Intuitively, a small fire would have less possibility to escalate, so we turn down the basic transmissibility to a half 
when the number of burning cells in neighborhood is less or equal than 2. 
 
Map the suppression measures into actions of MDP 
 There are three classes of measures of fire suppression, namely direct attack, parallel attack and indirect attack on 
fires[12]. Direct attack is made directly on the fire's edge or perimeter, knocking down the fire by dirt or water. Parallel attack 
is made by constructing a fireline parallel to, but further from, the fire edge than in direct attack. Indirect attack is 
accomplished by building a fireline some distance from the fire edge and backfiring the unburned fuel between the fireline 
and the fire edge. We can abstract two actions from these measures, one is put out the fire on a cell, and the other is cut off 
the fuel on a cell to prevent the fire spread across it. We use  to denote put out the fire on cell , and 

 to denote cut out the fuel on cell . The outcome of the actions may not be deterministic, and each outcome 
is reached with some probability. The preconditions and effects of the actions are formulated (as Table 2). 
 

TABLE 2: Preconditions and effects of action 
 

Action Precondition Effect Probability 

    

  
  

  

 
Design reward function with respect to the goals of firefighting missions 
 In most wildfire containment situations, the prior goal of the decision makers (fire commanders) is to put out the fire 
as soon as possible. Therefore, we need to interpret this goal into reward function. We consider both the loss caused by the 
fire and the cost of fire suppression actions in reward function, letting  be the loss of a burning cell at one time step, 

 and  be the cost of taking put and cut action, respectively. Then, we have reward function, 

. 

 Moreover, in some wildfire situations, there may be some important targets (like village or buildings) on the wildfire 
region. The decision makers not only consider the firefighting, but also the protection of such important targets. We can 
easily model this decision making problem by considering the value of the target in the reward function. For example, 
suppose that an important target lies on the cell , and a large weight is assigned to the target. Once it burned, it 
would cause a penalty of the weight. Then the reward function can be modified to 

 

 
RESULTS AND DISCUSSION 

 
 We use two scenarios to illustrate the application of our model and verify the fire containment effects. The first 
scenario is simply firefighting decision. The second one is multiple goals decision including firefighting and protecting an 
important target on the fire region. 
 
Firefighting Scenario 
 In this scenario, we simply assume the wildfire region shares the same fire spread factors, such as homogeneous 
vegetation and flat terrain, no wind. Therefore, the weights of these factors are simply set to 1. Moreover, we assume the 
successful rate of put and cut actions are 100%, and then =1, =1. The other parameters of the decision model are m=10, 
n=10 , v=0.1, =1, =0, =0. The initial state of the wildfire is shown in figure 2. There are five cells on fire at the 
beginning.  
 To verify the fire containment effects, we simulate six policies of fire control and compare their effects. The policies 
are no control policy (NCP), random putting out policy (RPP), dynamic decision making of putting out policy (DDMPP), 
random cutting off policy (RCP), dynamic decision making of cutting off policy (DDMCP), and dynamic decision making of 
mixture actions policy (DDMMP). NCP provides a pure simulation of the wildfire; random policies (RPP and RCP) are 
reference to the dynamic decision making policy (DDMPP and DDMCP); while the DDMMP is composed of both of put and 
cut actions calculated by the model. 
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Figure 2: Firefighting scenario 
 
 For each policy, the simulation is executed 100 times, with a decision horizon of 30 time steps. The results (average of 
the 100 simulations) are shown in figure 3. Since the cut off action clears the vegetation on the cell, the number of cut off cells is 
also included in the burned area. We can see from figure 3(a), for NCP, the burning area is obviously the largest among the six 
policies since no control measures implemented in such policy. However, the burned area of RCP and DDMCP are even larger 
than NCP in most of the simulation times (see figure 3(b)). This reveals that although the burning area of RCP and DDMCP are 
smaller than NCP due to the amount of cleared cells, from the vegetation damage perspective, these two policies are worse. In 
addition, these two policies demonstrate no difference in burning area and burned area, and the dynamic decision making plays 
insignificant role during the response process. Therefore, the cut action is not an effective action in the context of our model. 
This is also reflected in DDMMP. Because of considering cut action, the DDMMP is even worse than RPP. On the contrary, the 
put action is quite effective in wildfire containment in the context of our model. All of the three policies considering put action 
demonstrate great advantages in both of burning area and burned area than the other policies. Additionally, DDMPP surpasses 
RPP, demonstrating effectiveness of dynamic decision making policy solved with our model. 
 

 
(a) (b)
Figure 3: Firefighting scenario simulation results: a) Burning area, b) Burned area. 

 
Important target protection scenario 
 Through above analysis, the cut action is not as effectiveness as put action. As a result, in this scenario, we only 
consider put action in the response to the wildfire. We also assume the fire spread affect factors are uniform and set to 1 as in 
the previous scenario. The other parameters of the decision model are m=10, n=10, v=0.1, =1, =1, =0, w=1000. 
The important target is near the initial burning cells at  (see figure 4). 
 

 
 

Figure 4: Important target protection scenario 
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 We compare differences between two dynamic decision making rules, whether considering the important target in 
the decision. Each rule can be expressed with corresponding reward function as shown in Eq. (1) and Eq. (2). Eq. (1) is the 
rule without considering the important target; Eq. (2) is the rule considering the target and encourage executing put actions 
near the target by gaining award of 2 of each put action. Each was simulated 100 times, with a decision horizon of 30 time 
steps. 
 

                           (1) 

       (2) 

 
 In order to evaluate the decision effect, we calculate the put action executed times of each cell, as well as burned 
times of each cell of both decision rules. The burned times are illustrated in figure 5 and figure 6. Under the rule of without 
considering target, the initial burning cells , , , ,  are put out 96, 96, 97, 93, 97 times 
respectively, which are the most distributed cells of put actions. Their surrounding cells are less distributed uniformly. Then 
the put action times of the farther surrounding cells decrease in a uniform manner. The burned times of each cell display the 
same distribution as the put action taking times (see figure 5). Meanwhile, the put action taking times of the initial burning 
cells under the rule of considering target are not uniformly distributed. The topleft cells have a large number of put action 
times than the cells near the target. This shows the decision effect that during the response process, the cells near the target 
have a higher priority and thus are put out once they catch on fire before they transmit the fire to their neighbor cells; whereas 
the cells on the reverse direction near to the target are sometimes ignored and thus are put out late, which cause a larger 
spread to their neighbor cells. As a result, the less burned times lead to less put actions. We can see from figure 6, the burned 
times are sharply decrease approaching the target, and they are not uniformly distributed as circles like in figure 5. This 
proves our model remarkably reflect the goal of protecting important target. 
 

 
Figure 5: Cells burned times without considering the 
target 

Figure 6: Cells burned times considering the target 

 
CONCLUSIONS 

 
 We presented a framework for building a decision model which can dynamically control wildfires, a complex task 
during uncertainty and real time decision situation. It is important to include a formal model for wildfire suppression 
measures supporting human decision making for this complex task, since the problem involves urgency and dynamic 
feedback that make the plan exploration and evaluation very difficult for human experts. Our model based on MDP can serve 
as a basic tool to support the dynamic decision making of wildfire containment, and makes the decision problems 
quantitatively represented and computationally solved. 
 Moreover, our model can be adopted by wildfire management decision support systems. The model can be 
implemented as software or systems for real-time decisions support. Online algorithms[13] of MDP generate policies in an 
interactive manner, which is able to generate policies according to given states in real-time. As a result, the stress of the 
decision makers would be alleviated under time pressure and urgency with such decision support systems. 
 Last but not least, it should be noted that the dynamic decision model also captures essential features of related 
problems such as the spreading of infectious diseases, flooding, and hazardous chemical gas. Through expert analysis of such 
domains, the framework of this model can also be applied to these problems, and shed light on decision support for human 
experts in these related fields. 
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