D-Radius and D-Diameter of Some Families of Graphs

Reddy Babu $\mathrm{D}^{1^{*}}$ and Varma PLN ${ }^{2}$
${ }^{1}$ Department of Mathematics, K.L. University, Vaddeswaram522502, A.P, India
${ }^{2}$ Department of Science and Humanities, V. F. S. T. R. University, Vadalamudi, Guntur, India

*Corresponding author: Reddy Babu D, Department of Mathematics, K.L. University, Vaddeswaram522502, A.P, India, Tel: +919441752543; E-mail: reddybabu17@gmail.com

Received: March 20, 2017; Accepted: April 10, 2017; Published: April 12, 2017

Abstract

The D-distance between vertices of a graph is obtained by considering the path lengths and as well as the degrees of vertices present on the path. In this article, we study the D-radius and D-diameter of some families of graphs with respect to D-distance. 2000 Mathematics Subject Classification: 05C12.

Keywords: D-distance; D-radius; D-diameter

Introduction

By a graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$, we mean a finite undirected graph without loops and multiple edges. The concept of distance is one of the important concepts in study of graphs. It is used in isomorphism testing, graph operations, Hamilton city problems, extremal problems on connectivity and diameter, convexity in graphs etc. Distance is the basis of many concepts of symmetry in graphs [1].

In an earlier article authors introduced the concept of D-distance [2], by considering not only path length between vertices, but also the degrees of all vertices present in a path while defining the D-distance.

Preliminaries

Throughout this article, by a graph $\mathrm{G}(\mathrm{V}, \mathrm{E})$ or simply G , we mean a non-trivial, finite, undirected graph without multiple edges and loops. Further all graphs we consider are connected.

Definition 2.1: If u, v are vertices of a connected graph G the D-length
P of a $u-v$ path S is defined as $l(s)=d(u, v)+\operatorname{deg}(u)+\operatorname{deg}(v)+\operatorname{deg}(w)$ where sum runs over all intermediate vertices w of s.

Definition 2.2: (D-distance). The D-distance $d^{D}(u, v)$ between two vertices u, v of a connected graph G is defined
as $d^{D}(u, v)=\min \{l(s)\}$ if u, v are distinct and $d^{D}(u, v)=0$ if $u=v$, where the minimum is taken over all $u-v$ p aths s in G.

Definition 2.3: The D-eccentricity of any vertex $v, e^{D}(v)$, is defined as the maximum distance from v to any other vertex, i.e., $e^{D}(v)=\max \left\{d^{D}(u, v): u \in V(G)\right\}$

Definition 2.4: Any vertex u for which $d^{D}(u, v)=e^{D}(v)$ is called D eccentric vertex of v. Further, a vertex u is said to be D eccentric vertex of G if it is the D - eccentric vertex of some vertex.

Definition 2.5: The D _radius, denoted by $r^{D}(G)$, is the minimum D _eccentricity among all vertices of G i.e., $r^{D}(G)=\min \left\{e^{D}(v): v \in V(G)\right\}$. Similarly the D _diameter, $d^{D}(G)$, is the maximum D-eccentricity among all vertices of G.

Definition 2.6: The D _center of $G, C^{D}(G)$, is the sub graph induced by the set of all vertices of minimum D eccentricity. A graph is called D _self-centered if $C^{D}(G)=G$ or equivalently $r^{D}(G)=d^{D}(G)$. Similarly, the set of all vertices of maximum D-eccentricity is the D-periphery of G.

D-radius and D-diameter of families of graphs

There are some graphs for which D-radius and D-diameter are same, i.e., they are D-self-centered.

Theorem 3.1: For Complete graph, K_{n}, on n vertices $(n \geq 3)$ we have $r^{D}\left(K_{n}\right)=d^{D}\left(K_{n}\right)=2 n-1$.
Proof: In complete graph K_{n}, degree of each vertex is $n-1$. Thus D-distance between any two vertices is $1+n-1+n-1=2 n-1$. Thus D-eccentricity of every vertex is $2 n-1$. Hence D-radius and D-diameter of K_{n} are equal and is equal to $2 n-1$.
Theorem 3.2: For cycle graph, C_{n}, with n vertices we have $r^{D}\left(C_{n}\right)=d^{D}\left(C_{n}\right)= \begin{cases}\frac{3 n+4}{2} & \text { if } n \text { is even } \\ \frac{3 n+1}{2} & \text { if } n \text { is odd. }\end{cases}$

Proof: In cycle graph C_{n} degree of each vertex is 2 . The D-distance between the vertices is given below. We will consider even and odd cases separately.

Case 1: When n is even, the D-distance in C_{n} are as below.

TABLE 1. D-distances of cyclic graphs if \mathbf{n} is even.

	v_{1}	v_{2}	v_{3}	\cdots	$v_{\frac{n}{2}-1}$	$\nu_{\frac{n}{2}}$	$v_{\frac{n}{2}+1}$	$v_{\frac{n}{2}+2}$	$v_{\frac{n}{2}+3}$	\cdots	v_{n-1}	v_{n}
v_{1}	0	5	8	\cdots	$\frac{3 n-8}{2}$	$\frac{3 n-2}{2}$	$\frac{3 n+4}{2}$	$\frac{3 n-2}{2}$	$\frac{3 n-8}{2}$	\cdots	8	5
v_{2}	5	0	5	\cdots	$\frac{3 n-14}{2}$	$\frac{3 n-8}{2}$	$\frac{3 n-2}{2}$	$\frac{3 n+4}{2}$	$\frac{3 n-2}{2}$	\cdots	11	8
v_{3}	8	5	0	\cdots	$\frac{3 n-20}{2}$	$\frac{3 n-14}{2}$	$\frac{3 n-8}{2}$	$\frac{3 n-2}{2}$	$\frac{3 n+4}{2}$	\cdots	14	11
\vdots	\vdots	.	\vdots	\vdots	\vdots	!	\vdots	!	!	!	\vdots	!
$v_{\frac{n}{2}-1}$	$\frac{3 n-8}{2}$	$\frac{3 n-14}{2}$	$\frac{3 n-20}{2}$	\cdots	0	5	8	11	14	\cdots	$\frac{3 n+4}{2}$	$\frac{3 n-2}{2}$
$v_{\frac{n}{2}}$	$\frac{3 n-2}{2}$	$\frac{3 n-8}{2}$	$\frac{3 n-14}{2}$	\cdots	5	0	5	8	11	\cdots	$\frac{3 n-2}{2}$	$\frac{3 n+4}{2}$
$v_{\frac{n}{2}+1}$	$\frac{3 n+4}{2}$	$\frac{3 n-2}{2}$	$\frac{3 n-8}{2}$	\cdots	8	5	0	5	8	\cdots	$\frac{3 n-8}{2}$	$\frac{3 n-2}{2}$
$v_{\frac{n}{2}+2}$	$\frac{3 n-2}{2}$	$\frac{3 n+4}{2}$	$\frac{3 n-2}{2}$	\cdots	11	8	5	0	5	.	$\frac{3 n-14}{2}$	$\frac{3 n-8}{2}$
$v_{\frac{n}{2}+3}$	$\frac{3 n-8}{2}$	$\frac{3 n-2}{2}$	$\frac{3 n+4}{2}$	\cdots	14	11	8	5	0	\cdots	$\frac{3 n-20}{2}$	$\frac{3 n-14}{2}$
\vdots	\vdots	\vdots	!	!	\vdots	\vdots	\vdots	\vdots	\vdots	!	\vdots	!
v_{n-1}	8	11	14	\cdots	$\frac{3 n+4}{2}$	$\frac{3 n-2}{2}$	$\frac{3 n-8}{2}$	$\frac{3 n-14}{2}$	$\frac{3 n-20}{2}$	\cdots	0	5
v_{n}	5	8	11	\cdots	$\frac{3 n-2}{2}$	$\frac{3 n+4}{2}$	$\frac{3 n-2}{2}$	$\frac{3 n-8}{2}$	$\frac{3 n-14}{2}$	\cdots	5	0

From the above table, we see that the D-eccentricity of every vertex is $\frac{3 n+4}{2}$. Hence the D - radius and D-diameter is same, if n is even.

Case 2: When n is odd, the D-distance in C_{n} are as below
TABLE 2. D-distances of cyclic graphs if \mathbf{n} is odd.

	v_{1}	v_{2}	v_{3}	\cdots	v_{n-1}	v_{n+1}^{2}	v_{n+3}^{2}	v_{n+5}^{2}	\cdots	v_{n-1}	v_{n}
v_{1}	0	5	8	\cdots	$\frac{3 n-5}{2}$	$\frac{3 n+1}{2}$	$\frac{3 n+1}{2}$	$\frac{3 n-5}{2}$	\cdots	8	5
v_{2}	5	0	5	\cdots	$\frac{3 n-11}{2}$	$\frac{3 n-5}{2}$	$\frac{3 n+1}{2}$	$\frac{3 n+1}{2}$	\cdots	11	5
v_{3}	8	5	0	\cdots	$\frac{3 n-17}{2}$	$\frac{3 n-11}{2}$	$\frac{3 n-5}{2}$	$\frac{3 n+1}{2}$	\cdots	14	11
\vdots											
$v_{\frac{n-1}{2}}$	$\frac{3 n-5}{2}$	$\frac{3 n-11}{2}$	$\frac{3 n-17}{2}$	\cdots	0	5	8	11	\cdots	$\frac{3 n+1}{2}$	$\frac{3 n+1}{2}$
v_{n+1}^{2}	$\frac{3 n+1}{2}$	$\frac{3 n-5}{2}$	$\frac{3 n-11}{2}$	\cdots	5	0	5	8	\cdots	$\frac{3 n-5}{2}$	$\frac{3 n+1}{2}$
v_{n+3}^{2}	$\frac{3 n+1}{2}$	$\frac{3 n+1}{2}$	$\frac{3 n-5}{2}$	\cdots	8	5	0	5	\cdots	$\frac{3 n-11}{2}$	$\frac{3 n-5}{2}$
v_{n+5}^{2}	$\frac{3 n-5}{2}$	$\frac{3 n+1}{2}$	$\frac{3 n+1}{2}$	\cdots	11	8	5	0	\cdots	$\frac{3 n-17}{2}$	$\frac{3 n-11}{2}$
\vdots											
v_{n-1}	8	11	14	\cdots	$\frac{3 n+1}{2}$	$\frac{3 n-5}{2}$	$\frac{3 n-11}{2}$	$\frac{3 n-17}{2}$	\cdots	0	5
v_{n}	5	8	11	\cdots	$\frac{3 n+1}{2}$	$\frac{3 n+1}{2}$	$\frac{3 n-5}{2}$	$\frac{3 n-11}{2}$	\cdots	5	

From the above table, we can see that the D-eccentricities of each vertex is $\frac{3 n+1}{2}$, if n is odd. Hence D-radius and D-
diameter is same. Thus $r^{D}\left(C_{n}\right)=d^{D}\left(C_{n}\right)=\left\{\begin{array}{ll}\frac{3 n+4}{2} & \text { if } n \text { is even } \\ \frac{3 n+1}{2} & \text { if } n \text { is odd }\end{array}\right.$.

Next, we calculate D-radius and D-diameter of some families of graphs.

Theorem 3.3: For complete biaparted graph $K_{m, n},(m \geq n) \quad$ we have $r^{D}\left(K_{m, n}\right)=m+2(n+1)$ and $d^{D}\left(K_{m, n}\right)=n+2(m+1)$.

Proof: Without loss of generality assume that $(m \geq n) . N$ complete biparted graph $K_{m, n}$, degree of the vertices $v_{1}, v_{2}, v_{3}, \cdots v_{m}$ is n and degree $u_{1}, u_{2}, u_{3}, \cdots u_{n}$ of the vertices m. Thus $d^{D}\left(v_{i}, v_{j}\right)=m+2(n+1)$ if $i \neq j, d^{D}\left(u_{i}, u_{j}\right)=n+2(m+1)$ if $i \neq j$ and $d^{D}\left(v_{i}, u_{j}\right)=m+n+1$.

Therefore, $e^{D}\left(v_{i}\right)=m+2(n+1) \forall i$ and $e^{D}\left(u_{j}\right)=n+2(m+1) \forall j$. Hence the D-radius of $K_{m, n}$ is $m+2(n+1)$ and D-diameter of $K_{m, n}$ is $n+2(m+1)$.

Theorem 3.4: For star graph, $s t_{n, 1}$, we have $r^{D}\left(s t_{n, 1}\right)=n+2$ and $d^{D}\left(s t_{n, 1}\right)=n+4$.

Proof: In star graph, $s t_{n, 1}$, the degree of central vertex is n and degree of remaining vertices is 1 . The D-distance from central vertex to other vertices is $n+2$ and the D-distance between all other vertices is $n+4$. Therefore the minimum Deccentricity is $n+2$ and the maximum D-eccentricity is $n+4$. Hence the D-radius of $s t_{n, 1}$ is $n+2$ and the D-diameter of $s t_{n, 1}$ is $n+4$.

Theorem 3.5: For path graph P_{n}, on n vertices $(n \geq 3)$ we have $r^{D}\left(P_{n}\right)=\left\{\begin{array}{ll}\frac{3 n-1}{2} & \text { if } n \text { is odd } \\ \frac{3 n+2}{2} & \text { if } n \text { is even }\end{array}\right.$ and $d^{D}\left(P_{n}\right)=3(n-1)$ for $n \geq 3$.

Further $r^{D}\left(P_{2}\right)=d^{D}\left(P_{2}\right)=3$.

Proof: In path graph P_{n}, degree of end vertices is 1 and remaining vertices of degree is 2 .

For $n=2, d^{D}\left(v_{1}, v_{2}\right)=3$ and $d^{D}\left(v_{1}, v_{1}\right)=d^{D}\left(v_{2}, v_{2}\right)=0$. Thus the D-eccentricity of each vertex is 3 . Hence the D-radius and D-diameter of P_{2} are same and equal to 3 .

Next consider path graph with $n \geq 3$. we can consider even and odd cases separately, in this case the D-distance between vertices are as given below.

Case 1: When n is odd, the D-distance in P_{n} are as below

TABLE 3. \mathbf{D}-distances of path graphs if \mathbf{n} is odd.

	v_{1}	v_{2}	v_{3}	\cdots	v_{n-1}	v_{n+1}^{2}	v_{n+3}^{2}	\cdots	v_{n-1}	v_{n}
v_{1}	0	4	7	\cdots	$\frac{3 n-7}{2}$	$\frac{3 n-1}{2}$	$\frac{3 n+5}{2}$	\cdots	$3 n-5$	$3 n-3$
v_{2}	4	0	5	\cdots	$\frac{3 n-11}{2}$	$\frac{3 n-5}{2}$	$\frac{3 n+1}{2}$	\cdots	$3 n-7$	$3 n-5$
v_{3}	7	5	0	\cdots	$\frac{3 n-17}{2}$	$\frac{3 n-11}{2}$	$\frac{3 n-5}{2}$	\cdots	$3 n-10$	$3 n-7$
\vdots										
v_{n-1}^{2}	$\frac{3 n-7}{2}$	$\frac{3 n-11}{2}$	$\frac{3 n-17}{2}$	\cdots	0	5	8	\cdots	$\frac{3 n+1}{2}$	$\frac{3 n+5}{2}$
v_{n+1}^{2}	$\frac{3 n-1}{2}$	$\frac{3 n-5}{2}$	$\frac{3 n-11}{2}$	\cdots	5	0	5	\cdots	$\frac{3 n-5}{2}$	$\frac{3 n-1}{2}$
v_{n+3}^{2}	$\frac{3 n+5}{2}$	$\frac{3 n+1}{2}$	$\frac{3 n-5}{2}$	\cdots	8					

From the above table we can see that the D-eccentricities are $\left\{3 n-3,3 n-5,3 n-7, \cdots, \frac{3 n+5}{2}, \frac{3 n-1}{2}, \frac{3 n+5}{2}, \cdots, 3 n-5,3 n-3\right\}$. Thus the maximum D-eccentricity of P_{n} is $3 n-3$ and minimum D-eccentricity is $\frac{3 n-1}{2}$ Hence the D-radius is $\frac{3 n-1}{2}$ and the D-diameter is $3 n-3$ if n is odd.

Case 2: When n is even, the D-distance in P_{n} are as below

TABLE 4. D-distances of cyclic graphs if \mathbf{n} is even.

	v_{1}	v_{2}	v_{3}		$\nu_{\frac{n}{2}-1}$	$\nu_{\frac{n}{2}}$	$v_{\frac{n}{2}+1}$	$v_{\frac{n}{2}+2}$		v_{n-1}	v_{n}
v_{1}	0	4	7	\cdots	$\frac{3 n-10}{2}$	$\frac{3 n-4}{2}$	$\frac{3 n+2}{2}$	$\frac{3 n+8}{2}$		$3 \mathrm{n}-5$	3n-3
v_{2}	4	0	5	.	$\frac{3 n-14}{2}$	$\frac{3 n-8}{2}$	$\frac{3 n-2}{2}$	$\frac{3 n+4}{2}$		3n-7	$3 \mathrm{n}-5$
v_{3}	7	5	0		$\frac{3 n-20}{2}$	$\frac{3 n-14}{2}$	$\frac{3 n-8}{2}$	$\frac{3 n-2}{2}$		$3 \mathrm{n}-10$	$3 \mathrm{n}-7$
\vdots	\vdots	!	!	\vdots	;	;	!	!	\vdots	\vdots	!
$v_{\frac{n}{2}-1}$	$\frac{3 n-10}{2}$	$\frac{3 n-14}{2}$	$\frac{3 n-20}{2}$	\cdots	0	5	8	11		$\frac{3 n+4}{2}$	$\frac{3 n+8}{2}$
$v_{\frac{n}{2}}$	$\frac{3 n-4}{2}$	$\frac{3 n-8}{2}$	$\frac{3 n-14}{2}$	\cdots	5	0	5	8	\cdots	$\frac{3 n-2}{2}$	$\frac{3 n+2}{2}$
$v_{\frac{n}{2}+1}$	$\frac{3 n+2}{2}$	$\frac{3 n-2}{2}$	$\frac{3 n-8}{2}$	\cdots	8	5	0	5	\cdots	$\frac{3 n-8}{2}$	$\frac{3 n-4}{2}$
$v_{\frac{n}{2}+2}$	$\frac{3 n+8}{2}$	$\frac{3 n+4}{2}$	$\frac{3 n-2}{2}$	\cdots	11	8	5	0		$\frac{3 n-14}{2}$	$\frac{3 n-10}{2}$
!	\vdots	!	!	\vdots	!	!	:	!	!	:	\vdots
v_{n-1}	$3 \mathrm{n}-5$	$3 \mathrm{n}-7$	$3 \mathrm{n}-10$	\cdots	$\frac{3 n+4}{2}$	$\frac{3 n-2}{2}$	$\frac{3 n-8}{2}$	$\frac{3 n-14}{2}$	\cdots	0	4
v_{n}	$3 \mathrm{n}-3$	$3 \mathrm{n}-5$	$3 \mathrm{n}-7$	\cdots	$\frac{3 n+8}{2}$	$\frac{3 n+2}{2}$	$\frac{3 n-4}{2}$	$\frac{3 n-10}{2}$	\cdots	4	0

From the above table we can see that the D-eccentricities are $\left\{3 n-3,3 n-5,3 n-7, \cdots, \frac{3 n+8}{2}, \frac{3 n+2}{2}, \frac{3 n+2}{2}, \frac{3 n+8}{2} \cdots, 3 n-5,3 n-3\right\}$. Thus the maximum D-eccentricity of P_{n} is $3 n-3$ and minimum D-eccentricity is $\frac{3 n+2}{2}$ Hence the D-radius is $\frac{3 n+2}{2}$ and the D-diameter is $3 n-3$ if n is even.

Thus $r^{D}\left(P_{n}\right)= \begin{cases}\frac{3 n-1}{2} & \text { if } n \text { is odd } \\ \frac{3 \mathrm{n}+2}{2} & \text { if } n \text { is even }\end{cases}$
and $d^{D}\left(P_{n}\right)=3(n-1)$ for $n \geq 3$.

Theorem 3.6: For wheel graph, $W_{n, 1}$, with $n+1$ vertices we have $r^{D}\left(W_{n, 1}\right)=n+4$ and $d^{D}\left(W_{n, 1}\right)=n+8$ for $n \geq 6$. Further we have $r^{D}\left(W_{3,1}\right)=d^{D}\left(W_{3,1}\right)=7, r^{D}\left(W_{4,1}\right)=8, d^{D}\left(W_{4,1}\right)=11, r^{D}\left(W_{5,1}\right)=9$ and $d^{D}\left(W_{5,1}\right)=11$.

Proof: For $n=3, d^{D}\left(v_{i}, v_{j}\right)=7$ if $v_{i} \neq v_{j}$. Thus the D-eccentricity of every vertex is 7. Hence the D-radius and Ddiameter of $W_{3,1}$ is 7 (and hence $W_{3,1}$ is self-centered).

For $n=4, d^{D}\left(v_{i}, v_{j}\right)=8$ if v_{i} is central vertex and $d^{D}\left(v_{i}, v_{j}\right)=7$ or 11 , if v_{i} is not central vertex. Thus the Deccentricity central vertex is 8 and the D-eccentricity of other vertices is 11 . hence the D-radius of $W_{4,1}$ is 8 and D diameter of $W_{4,1}$ is 11 .

For $n=5, d^{D}\left(v_{i}, v_{j}\right)=9$ if v_{i} is central vertex and $d^{D}\left(v_{i}, v_{j}\right)=7$ or 11 , if v_{i} is not central vertex. Thus the Deccentricity central vertex is 9 and the D-eccentricity of other vertices is 11 . hence the D-radius of $W_{5,1}$ is 9 and Ddiameter of $W_{5,1}$ is 11 .

In wheel graph $W_{n, 1}$ degree of central vertex is n and degree of remaining vertices is 3 . Thus D-eccentricity of central vertex is $n+4$ and D-eccentricity of remaining vertices is $n+8$ for $n \geq 6$. Thus the D-radius of $W_{n, 1}$ is $n+4$ and Ddiameter of $W_{n, 1}$ is $n+8$ for $n \geq 6$.

REFERENCES

1. Buckley F, Harary F. Distance in Graphs, Addison-Wesley. Longman. 1990.
2. Reddy Babu D, Varma PLN. D-distances in graphs, Golden Research thoughts,2013; vol 2(9): 53-58
3. Reddy Babu D, Varma PLN. A note on radius and diameter of a graph w.r.t, D-distance. Int J chem sci. 2016;14(2):1725-29.
www.tsijournals.com | March-2017
