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Introduction 

In recent years, many scholars began to pay attention to the double Hopf bifurcations of some nonlinear dynamic system. The 

resonant double Hopf bifurcation will lead to complex dynamic phenomena in nonlinear dynamical systems, such as torus 

and periodic orbits, period doubling, homoclinic and heteroclinic connections and chaos. 

 

Nayfeh and Mook [1] studied the high dimensional dynamical system with several pairs of pure imaginary roots. The local 

dynamic behavior of double Hopf bifurcation was analyzed by using the method of frequency domain with Mess and Chua 

[2]. With the aid of Poincare maps Xie and Ding [3] investigated a three degree of freedom vibrio impact system with double 

Hopf bifurcation and invariant tori, in which the rich bifurcation phenomena are found. Yu [4] considered the non-resonant 

double Hopf bifurcation of a class of dynamical system by using computer algebra, and the canonical form of nonlinear 

dynamic system was calculated by the method of multiple scales, and the calculation program of double Hopf bifurcation was 

given. 

 

The double Hopf bifurcation of a class of delay differential dynamical system was studied by using the normal form theory, 

and the stability of the equilibrium points of the linear system were analyzed by Orosz and Stépán [5]. Revel et al. [6] 
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considered the double Hopf bifurcation problem of a class of coupled circuit system, and the parameter bifurcation diagram 

was obtained. Zhang and Xu [7] used the Hopf bifurcation theorem to study the non-resonant double Hopf bifurcation of Van 

der Pol-duffing system with time delay. 

 

Buono and Belair [8] analyzed the non-resonant double Hopf bifurcation point of the scalar delay differential system by using 

the Normal form theory. Bel and Reartes [9] studied the Hopf bifurcation, double Hopf bifurcation and the Neimark Sacker 

bifurcation of van der Pol-duffing system. Using the canonical form method and the center manifold theorem, Li et al. [10] 

researched the almost periodic attractors and the double Hopf bifurcation response of a time delay coupled system. The 

bifurcation diagram of the system was given by numerical simulation. For high dimensional nonlinear systems, due to the 

limitation of the methods, the research on the system for the resonant double Hopf bifurcation is not perfect. 

 

The 2:1 resonance double Hopf bifurcation phenomena of several kinds of dynamical systems were studied by Campbell 

and LeBlanc [11]. Luongo et al. [12] considered the 2:1  and 3:1 resonance double Hopf bifurcations by using the method 

of multiple scales. Subsequently, Xu and Chung [13] researched 2:1  Hopf bifurcation phenomena of a class of Van der Pol 

dynamical system with time delays, and illustrated that there exist the codimension-2 or codimension-3 bifurcation behavior. 

The lk : resonant double Hopf bifurcation behavior of differential equations was studied by Broer et al. [14]. Revel et al. 

[15] studied the 3:2 resonant double Hopf bifurcation of a four-dimensional autonomous system, in which, the global 

bifurcation behavior of the system was analyzed. Saleh and Wagener [16] analyzed the 2:1  and 3:1  resonant double Hopf 

bifurcation by using the singularity theory and normal form theory and gave the stability analysis of the periodic solution and 

almost periodic solution for the system. Wang and Xu [17] considered the 3:1  resonance double Hopf bifurcation of a time 

delay system. 

 

Thin plates were widely used in aerospace and other engineering fields. In recent years, much progress has been made on 

nonlinear vibration and bifurcation problems on the dynamics of thin plates. Hadian and Nayfeh [18] used the method of 

multiple scales to study the nonlinear responses of the clamped circular plate under harmonic excitation with internal 

resonance. Yang and Sethna [19] investigated the local bifurcation and global bifurcation of the square thin plate with 

parametric excitation by using the average method and shown the system can take the chaotic motion in the sense of the 

Smale Horseshoe. 

 

The global bifurcation and chaotic dynamics of a rectangular thin plate with four edges simply supported under the combined 

actions of parametric excitation and external excitation were studied by Zhang et al. [20,21]. Awrejcewicz and Krysko [22] 

analyzed the periodic, almost periodic and chaotic motions of a thin plate under longitudinal and time varying loads. 

Awrejcewicz and Krysko [23] used Bubnov-Galerkin method to study the nonlinear dynamic responses of the flexible thin 

plate system. With the aid of energy phase method, Yao and Zhang [24] studied the multi-pulse chaotic dynamics of a thin 

plate under the combined actions of the parametric excitation and external excitation. Zhang et al. [25] considered the multi-

pulse chaotic dynamic responses of a Shilnikov type of non-autonomous buckling thin plate under parametric excitation 

using high dimensional Mlenikov method. The nonlinear vibration responses of a simple supported circular plate were 

studied by Akour and Nayfeh [26]. Zhou and Zhang [27] investigated the double Hopf bifurcation of a piezoelectric 
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composite laminates with the combined external excitation and internal excitation by using the method of multiple scales and 

singularity theory, then, the bifurcation diagram and the different steady state solutions of the average equations were 

analyzed for the nonlinear system. 

 

This paper aims at studying the double Hopf bifurcation of a rectangular thin plate with four edges simply supported under 

the combined actions of parametric excitation and external excitation. We first using the method of multiple scales transform 

a two degree of freedom nonlinear system into autonomous equation. Two different coordinates of averaged equation of the 

thin plate are analyzed. The existences of periodic and almost periodic motions of the nonlinear system in a certain condition 

are given by the numerical simulation, and the classification of bifurcation solutions of the nonlinear system are analyzed in 

different regions of the parameter space. 

 

Experimental 

Double Hopf bifurcation of rectangular thin plate with primary parameter resonance, i.e., 1:3 internal resonance 

We consider a rectangular thin plate under simply supported on four edges, its length is a  and b , and the thickness is h . 

The thin plate subjected to transverse excitation and internal excitations. A Cartesian coordinate system is shown in FIG. 1.  

 

O x

y

z

a

b

tyxF 1cos),( 

tppp 210 cos

 

FIG.1. The model of a rectangular thin plate and the coordinate system. 

 

The coordinate Oxy  is located on the middle surface of the thin plate, u 、 v  and w  are the displacements of a point on the 

surface of the thin plate of the x 、 y  and z direction, respectively. 

 

According to Chia [28], using the Hamiltons principle and Reddy order shear deformation theory, we got the two degree of 

freedom nonlinear dynamic equation which can be written as follows, 

tFwwwtfwwgww 11

2

212

3

112111111 coscos2    , (1a) 

tFwwwtfwwgww 122

2

12

3

212222222 coscos2    . (1b) 

 

Assuming the nonlinear system (1) is weakly nonlinear system, adding a small perturbation  to the damping terms, 

parametric excitation terms, external excitation terms and nonlinear terms, we obtain the following equations,  
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tFwwwtfwwww 11

2
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3
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2

111 coscos2    , (2a) 

tFwwwtfwwww 122

2
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3
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2

222 coscos2    . (2b) 

Consider the primary parametric resonance, i.e., internal resonance of the thin plate; we have the following resonance 

relationship: 

1 , 
3

2
2

, 
1

22

1
9

1
  , 2

22

2   , (3) 

Where, 1  and 2  are two detuning parameters. 

 

For convenience of analysis, let 3 . Using the method of multiple scales [1], we obtain the average equation of the thin 

plate in the plural form, 

22121

2

111111111
2
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2
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2

1

2

1

2

1
AAAiAAiAifAiAAD   , (4a) 
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1
iFAAAiAAiAiAAD   . (4b) 

The average equation in the Cartesian form will be expressed as,  
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
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
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xxxxxxxxx   , (5c) 
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2
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Fxxxxxxxxx   . (5d) 

Let 

ni

nn aA


e
2

1
 , 2,1n . (6) 

Put the equation (6) into equation (4), the average equation of the thin plate in the Polar form is obtained as follows: 

1111 2sin
2

1

2

1
 faa  , (7a) 

11

2

212

3

111111 2cos
2

1

8

1

8

3

2

1
 faaaaa  , (7b)  

2222 sin
6

1

2

1
 Faa  , (7c) 

222

2
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3
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6

1

12

1

8

1

6

1
 Faaaaa  . (7d) 
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In order to study the steady state solutions of equation (7), namely the periodic solutions or quasi-periodic solutions of 

equation (2), let the left side of the equation (7) equal to zero. Then, the bifurcation response equation of the thin plate can be 

written as follows, 

2
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2
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2
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faaaaa 

















 , (8a)  
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















 . (8b) 

 

Next, we will consider the various stationary solutions of equation (8) and its changing situation with the variable parameters 

 ， 1 ， 2 ， 1 ， 2 ， 1  and 2 . In order to facilitate the analysis, take 12 a  and 11 a  in equations (8a) and 

(8b), respectively, then the equation (8) can be expressed as: 

2

1

2

12

3

1111

2

1
4

1
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1
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1
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1
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






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






 , (9a) 
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
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




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 . (9b) 

 

After simplification, the bifurcation response equation of the thin plate is obtained as follows: 
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Let, 
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 (11) 

 

Take the equation (11) into equation (10), we get the following several different stationary solutions for the bifurcation 

equation (10). The specific circumstances are as follows. 

(1) Since the following condition is satisfied, namely, 

0 ii BA , 0
3 1

2 
i

i

k

k
, 2 ,1i . (12) 
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Three solutions will exist for equation (10), which can be written as: 

1

2
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3 i

i
iii

k

k
a  , 2 ,1i . (13) 

(2) When 0i ，namely, 
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then, there are two solutions for equation (10), 

 3
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Where 

 iiiiiiiii CABBkkAy 4
2

3 2

122,1  , 2 ,1i . (17) 

(3) When 0i ， 0iB , 2 ,1i , namely, 

04
2

 iii CAB , 0iB , 2 ,1i . (18) 

If the following condition is also satisfied, 
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The equation (10) will have one solution, namely, 
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If there 
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There are three solutions for equation (10), which can be written as: 
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then, there will have the following two solutions for equation (10), 
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The equation (10) will have two solutions: 
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The equation (10) then will have three solutions 
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In order to determine the stability of the solutions for equation (7), we should consider the Jacobi matrix of equation (5). The 

Jacobi matrix of equation (5) at the zero-solution point is written as: 
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The corresponding characteristic equation is  
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And the Eigen values are, 

2

1

2

12,1
2

1

2

1
f  , 24,3

6

1

2

1
 i . (35) 

The Jacobi matrix of equation (2) on the non-zero solution point can be written as:  
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The corresponding characteristic equation is, 
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In order to conveniently express, the characteristic equation (37) can be expressed as:  

0)( 43

2

2

3

1

4  llllp  , (38) 

And the Eigen values of equation (5) are,  

  111 2
4

1
WZl  ,  ,2

4

1
112 WZl   

 213 2
4

1
WZl  ,  214 2

4

1
WZl  , (39) 

All the coefficients in equations (38) and (39) are shown in Appendix. 

Based on the aforementioned analysis, the stability conditions for the non-zero solutions are: 

02 11  Wl , (40) 

02 21  Wl , (41) 

 0Z .             (42) 
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It is found from the aforementioned analysis that the solutions given in equations (13), (16), (20) and (27) can meet the 

conditions in the equation (42), while the solutions given by equations (24) and (29) do not satisfy the conditions in the 

equation (42). 

 

Based on the theory of bifurcation, the parameter plane  -1 is divided into several different regions by the stability 

critical curves for the steady solutions. These critical curves give the local bifurcation set for the nonlinear system (2), as 

shown in FIG. 2. 

 

 

FIG.2. The local bifurcation diagram of thin plate system on the parameter plane  1 . 

 

Numerical simulations  

In this section, we use MAPLE to study the nonlinear vibration response of the simply supported rectangular thin plate under 

the combined effects of transverse excitation and in-plane excitation with the primary parametric resonance and 3:1 internal 

resonance. 

 

According to the aforementioned analysis, we choose that the parameters and the initial values of equation (2) are 

38.02 , 05.11  , 64.12  , 11 f , 

17.010 x , 39.020 x , 28.030 x , 0.6640 x . 

The local bifurcation diagram is depicted for the rectangular thin plate with four edges simply supported in the parameter 

plane  -1  as shown in FIG. 2. 

(1) In the areas A1 and A2, the zero solution is the unique singular point. From the equation (36), we know that the singular 

point is steady focus in the region A1, so that, the zero solution is stable, and the singular point is unsteady focus in the 

region A2, therefore, the zero solution is unstable in this situation. 

 

(2) When crossing the line 3L , the zero solution change its stability, a pair of complex conjugate eigenvalues of equation (2) 

crossing the imaginary axis and become to a pair of simple pure imaginary eigenvalues, the system (1) occurs Hopf 

bifurcation, and limit cycles will occur from the initial point. When crossing the line 2L  and 4L , the stability of zero 

solution will also change, two pairs of complex conjugate eigenvalues will cross the imaginary axis and become to two 

simple pure imaginary eigenvalues, the system will take double Hopf bifurcation. 
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(3) In the areas B1, B2 and E, the number of steady solutions unchanged, and the steady solutions are stable. 

 

(4) When crossing the curve 1L  from area B1 into area C1, on the arc 1L , one eigenvalue of equation (2) becomes to zero, 

then the stability of the singularity points for the nonlinear system sensitively depend on the varying parameters in equation 

(10). In the region C1, the singular point is a saddle point, so the zero solution is unstable, and the system will produce 

Pitchfork bifurcation, that is, two non-zero solutions will bifurcate from the zero solution, as shown in equation (16). 

 

(5) When crossing the curve 1L  from area B2 into area C2, on the curve 1L , one eigenvalue becomes to zero, the other two 

non-zero solutions bifurcate from the zero solution, as shown in equation (29), and the nonlinear system (1) produces 

Pitchfork bifurcation. It is easily known that the two non-zero solutions are unstable. 

 

(6) In the region D, the solution for equation (27) is a saddle point, so this solution is unstable. 

 

 FIG. 3-8 represent the different forms of nonlinear vibration characteristics of the rectangular thin plate, respectively. In the 

following figures, diagrams (a) and (b) represent the two-dimensional phase diagrams on the plane  21 , xx  and  43 , xx , 

respectively. Graphs (c) and (d) are the waveform diagrams on the planes  1, xt  and  3, xt , respectively. Diagrams (e) and 

(f) are the three-dimensional phase diagrams in the spaces  321 ,, xxx  and  143 ,, xxx , respectively. 

 

Select the damping coefficient and tuning parameters of the piezoelectric composite laminates are 21.0  and 

17.01  as in area A1 in FIG. 2. We obtain the nonlinear vibration near the equilibrium solutions of the rectangular thin 

plate, as shown in FIG. 3. From the phase FIG. 3(a) and FIG. 3(b), we know that the solutions of the system tend to zero 

solution. Then, it is asymptotically stable. 
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FIG. 3. The motion of thin plate near the initial equilibrium point. 

 

To continue changing the damping coefficient and tuning parameters of the rectangular thin plate to 09.0 and 

18.01  as in area A2 in FIG. 2. The nonlinear vibration of the rectangular thin plate is shown in FIG. 4 near the 

stationary solution 01 a , 02 a .  

 

 

FIG. 4. The motion of thin plate near the points 01 a , 02 a . 
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When the damping coefficient and tuning parameters of composite laminated piezoelectric plate are 30.0  and 

56.01  as in area C1 in FIG. 2, the nonlinear vibration of the rectangular thin plate is shown in FIG. 5 near the 

stationary solution 01 a , 02 a .  

 

FIG. 5. The motion of thin plate near the points 01 a , 02 a . 

 

Taking the damping coefficient and tuning parameters of the rectangular thin plate as 49.0 , 68.01  , and 

30.0 , 92.11  as in area B1 and E in FIG. 2, respectively. The equilibrium solution of the rectangular thin plate 

will generate Hopf bifurcation. The nonlinear vibration of the rectangular thin plate is periodic motion, as shown in FIG. 6 

and FIG. 7. 
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FIG. 6. Periodic Motion of thin plate near the Hopf bifurcation point. 

 

 

FIG.7. Periodic motion of thin plate system near the Hopf bifurcation point. 

 

Let 67.0 and 4.01  as in area B2 in FIG. 2, we obtain the 3:1  resonant double Hopf bifurcation. Subsequently, the 

nonlinear response of the rectangular thin plate is almost periodic vibration, as shown in FIG. 8. 
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FIG. 8. Quasi-periodic motion of thin plate near the double hopf bifurcation point. 

 

Results, Discussion and Conclusion 

Based on the singular theory for high dimensional nonlinear system, the double Hopf bifurcations of the rectangular thin 

plate are studied in the primary parametric resonance, i.e., 3:1  internal resonance.  

Using the method of multiple scales, the averaged equation of the rectangular thin plate is obtained. Furthermore, the 

bifurcation equation of the rectangular thin plate is achieved. Through the analysis of the bifurcation equation of the system, 

the nonlinear dynamic responses of the rectangular thin plate are analyzed on the parameter plane based on the bifurcation 

diagram as shown in FIG. 2. Selecting the damping coefficient, external excitation, excitation parameters and detuning 

parameters as different values, the nonlinear vibration forms of the rectangular thin plate are analyzed under the combined 

actions of parametric and external excitation using the numerical approach, as shown in FIG. 3-8. The theoretical and 

numerical results indicated that Hopf bifurcation and double Hopf bifurcations occur for the rectangular thin plate.  

 

Further research jobs will be done based on this paper, such as, the detail analysis of local and global bifurcations of the 

piezoelectric composite laminated plate, and the investigation of the classification and unfolding of the piezoelectric 

composite laminated plate. 
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