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ABSTRACT 
 
The disturbance rejection problem for discrete-time linear systems with both state delay
and control delay is considered. Using a model transformation, the time-delay system is
transformed into a nondelayed system. The disturbance rejection control law is obtained
by solving its optimal regulation problem. A dynamic compensator is designed, which is
combined by an internal model principle corresponding to the disturbances and an optimal
control law which consists of state and control memory terms and a disturbance
compensator. Numerical simulations are used to illustrate the effectiveness of the optimal
regulator. 
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INTRODUCTION 
 
 The problem of disturbance rejection plays an important role. And there are several techniques of disturbance 
rejection. In the case of undeterministic disturbances, the robust H controller design[1] and its optimization problem[2] have 

been investigated by many researches. In the case of deterministic disturbances, various control techniques have been applied 
such as internal model control[3,4], adaptive control[5,6], predictive control[7], feedforward and feedback control[8]. Based on 
these techniques, the strategies of disturbance rejection are greatly improved. But many researches tend to the systems 
without delay.  
 The controller design for the control-delay systems has been investigated by researchers[9,10]. It was shown that the 
memoryless controllers are easy to implement, as well as the controller with delay compensation can has more robustness by 
some examples.  
 In this paper, we consider the disturbance rejection problem for discrete-time linear systems with both state delay 
and control delay. Through a model transformation, the delay system is transformed into a nondelayed system. And the 
memory terms in the controller are designed to compensate the state delay and the control delay perfectly. Furthermore, we 
apply the internal model principle to eliminate the system’s steady-state error. 
 The paper is organized as follows. After an introduction, in Section 2, system description and problem formulation 
are considered. In Section 3, by using the model transformation and solving the optimal regulation problem, the optimal 
controller is designed. Also, in Section 4, an observer-based optimal controller is designed. In order to verify its robustness 
and effectiveness, some numerical examples are simulated in Section 5. Concluding remarks are given in Section 6. 
 

THE PROBLEM OF OPTIMAL REGULATION FOR DISCRETE-TIME LINEAR SYSTEMS 
 
 Consider a discrete-time linear system with delayed control and measurement described by: 
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 where nx �  is the state vector, mu �  is the control input, py�  is the output, tv �  is exogenous disturbance 

vector, 1 10,h h  �  is control delay and 2 20,h h  � is measurement delay, 1 1, , ,A B C D are constant matrices of 

appropriate dimensions. Assume that the triple 1 1( , , )A B C  is controllable-observable completely. The disturbance input v  is 

generated by the linear exosystem 
 

( 1) ( ), ( ) ( ),w k Gw k v k Fw k    (2) 

 
 where Pw �  is state vector, whose initial condition is not known, ( , )G F is observable. We present the 

transformation: 
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 System (1) is transformed into the following system without delays: 
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 where 
 

1 2
1 2 1 1, ,h hh h h B A B C C A      (5) 
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 We reformulate the disturbance rejection problem to the optimal regulation problem as that to find the dynamic 
compensating controller 
 

1

1
1

( 1) ( ) ( ),

( ) ( ) ( ) ( ) ( ) ( )
k

k i
i s i s

i k h

k k Ny k

u k K k K z k K k K x k A Bu i

 

 


  

 

   

 
     

 


 (6) 

 
 and make the following hold: 
 (i) When 0v  , the closed-loop system 
 

( 1) ( )

( 1) ( )
s iA BK BKz k z k

k kNC 
     

          
 (7) 

 
 is asymptotically stable. 
 (ii)The optimal control law minimizes the average quadratic performance index  
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 where Q  is a positive semi-definite matrix, R  is a positive definite matrix, ( , )N  is controllable. With respect to 

quadratic performance index (8), Q  is decomposed into TQ C KC , where T r rK K   �  is positive definite. 

 Internal model (6) has the same dynamic characteristics with the disturbances exosystem, which guarantees the 
system robust, and the stabilizer ( ) ( )s su k K z k  in (6) is to stabilize the closed-loop system and to satisfy the dynamic 

characteristics. This optimal regulator design process is subject to the following assumptions: 
 Assumption (i) quadratic performance index m p ; (ii) To all the eigenvalues ( 1, , )i i n   of matrix A , it 

follows 
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DESIGN OF THE OPTIMAL REGULATOR 

 
 The argumented system combined with the internal model compensator and the stabilization controller described as 
following 
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 Then (11) is written as 
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 Under the Assumption 2, the pair ( , )A B  can be proved controllable. For prove the pair ( , )A C   is observerable, we 

propose the following lemma. 
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 Lemma 1. If the pair ( , )A C  is observerable such that the pair ( , )A C   is observerable.  

 Theorem 1. Suppose assumptions hold, then the disturbance rejection problem for time-delay system (1) and 
exosystem (2) with the dynamic compensating controller (6) is solvable by the optimal control law 
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 where TS R B PB    , the positive definite matrix P is the unique solutions of the Riccati matrix equation 
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 the matrix P is the unique solutions of the Stein matrix equation 
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 Proof. Disturbance rejection problem (1) to the optimal regulation problem with respect to the quadratic cost 
functional (8) leads to the two-point boundary value problem 
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 and the optimal control law is 
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 where TS R B PB    , and we obtain  
 

-1 T -1 T( ) [ ( ) ] ( ) ( )( ) ( )T Tk Q A I PBS B PA z k A I PBS B PDF PG w k              (20) 

 
 Compared with (18) and (20), we obtained Riccati matrix equation (14) and Stein matrix equation (15). This ends 
the proof of Theorem 1. 
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DESIGN OF THE OBSERVER-BASED REGULATOR 
 

 In the above design, we suppose every variable of state vector ( )x k  is measurable. However, in general, there are 
some unmeasurable variables of state, and we design a reduced-order observer as the stabilizer to estimate the unmeasurable 
state ( )x k  from the measured output ( )y k . First, choose ( )n t tL R    which leads T T T[ ]T C L  nonsingular, and notes that 

1
1 2[ ]S T S S   . Then 

 
1ˆ [ 0],tC CT I   

 
 where tI  is tht  identical matrix. Let ( ) ( )z k z k   and 
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 in which , , , ( , 1, 2)i ij i iz A B D i j   are real constant matrices of appropriate dimensions. The reduced-observer is 

constructed by 
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 Further derivation yields the reduced-order observer 
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 where ˆ( )x k  is the estimate of ( )x k ,   is the observer state, L  is the observer gain and the pair 22 12( , )A A  is 

observable for Assumption 1. By choosing the observer gain L  and using the pole placement, we get the most perfect 
estimation state ˆ( )x k  with ˆlim ( ) ( )

t
x k x k


 . Submitting the estimate state ˆ( )x k  to the state ( )x k  of controller (13), we obtain 

the dynamic optimal regulation controller which is summarized in the following: 
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 Corollary 1. Suppose assumptions hold, then the dynamic disturbance rejection problem for time-delay system (1) 
and exosystem (2) is solvable by the dynamic control law 
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 where the positive definite matrix P  is the unique solutions of the Riccati matrix equation (14), the matrix P is the 
unique solutions of the Stein matrix equation (15) respectively.  
 Consider the discrete-time linear system with delayed control and measurement described by 
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 and the quadratic performance index is chosen as (9) with 
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 The exosystem generates the disturbances described by 
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 We construct the internal model as 
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 We simulate the performance of the designed controller taking the control delays 1 10 30h h ， and 1 60h  , 

simulation curves of states 1( )x k , 2 ( )x k , 3 ( )x k and the optimal control *( )u k  as follows: 
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Figure 1 : Simulation curves of state 1( )x k  

 

 
 

Figure 2 : Simulation curves of state 2 ( )x k  

 
 

 
 

Figure 3 : Simulation curves of state 3 ( )x k  
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Figure 4 : Simulation curves of optimal control * ( )u k  
 
 From the above simulation results, we can get that the quality of control is gradually worse when the delay is 
gradually bigger, the optimal control law designed of via internal model with delayed control and measurement is effective. 
 

CONCLUSIONS 
 
 This paper presents an approach of disturbance rejection based on an internal model for discrete-time linear systems. 
The control law is obtained by model transformation and solving the Riccati equation. The simulation results show clearly 
that it is effective to compensate the delays and suppress the disturbance. And the observer-based dynamic regulator 
guarantees the unmeasurable states estimated and the state feedback control physically realizable. 
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