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ABSTRACT

There hasbeen adebate about the computation of amplitudesand periodicities of multi-decadal sealevel oscillations
aimed to prevent claimstherelative sealevel rates of rise higher than the recent past in some areas may be the result
of natural oscillations. We show here that whilethe relative sealevel rates of rise are actually not only higher, but
also lower than the recent past, it all depends on the phasing of the oscillations that also changes from one areato
the other, the sinusoidal approximation of the oscillations is an imperfect model with nonlinearities applied to
describe amuch more complex pattern. Therefore, the determination of amplitude, phase and period of the sinusoidal
oscillations approximating a more complex pattern may certainly slightly vary from one approach to the other.
However, this does not change too much the conclusion that the sealevels generally oscillates with multi-decadal
periodicities of about 20 years and about 60 years in many locations worldwide, and these oscillations should not
be sold as proof of the existence of global warming where convenient. © 2016 Trade Sciencelnc. - INDIA

SEALEVELSALONGTHE EASTERN
NORTH SEATO CENTRAL BALTIC SEA
NORTHWEST EUROPEAN SHELF

Hansen, Aagaard, and K uijpers¥, HAK theresfter,
have proposed a mechanism of sealevel forcing by
synchronization of 56- and 74-years oscillationswith
the Moon’s Nodal Tide on the Northwest European
Shelf (Eastern North Seato Central Baltic Sea) by
analyzingtherdativesealeve datafromthelongterm
tidegaugesof thearea. Their statistical analysisreved
astrong correl ation between sea-level changesandthe
sum of identified harmonic oscillations, corresponding
to thelunar nodd period and four multiplesof it. Their
iterative method for least residua sine regression
identifiesthe harmonic sea-level oscillations, and the

authorssuggest correlation with the gravitational sea
leve effectsof thelunar nodd oscillation. The3rdativey
largeharmonicinthesea-leve oscillationswith period
lengths of 18.6, 60.5 and 76.1 years correspond very
well tofactors 1, 3, and 4 of the 18.6-year lunar nodd
period. The sum of these oscillations leaves small
resdudsresolvedinto 2 further, satisticaly lesssgnificant
oscillationswith apparent period lengths of 28.1 and
111.1 years, corresponding to factors 1% and 6 of the
lunar nodal period. Strong quasi-oscillations occur.
According to the authors, the present sea level
oscillationsabout thelonger term trend for the areais
characterized by alarge quasi-oscillation commenced
in 1971 that should culminate in 2011, with the
temporary relative sealeve ratesof risshigher thanthe
longer term trend expected to reduce by then below
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thislonger termtrend.

Schmith, Thejll and Nielsen'@, STN hereafter,
disagreewithHAK criticizingimportant aspectsof their
andys sand thereby casting doubt ontheir conclusions.
STN claim that opposite to HAK the 18.6-year
variationsin sealeve arenot supported by tidal theory
and theexistence of such variationsmust beexplicitly
shown. Thedternative statistica method used by STN
to cal cul ated the amplitude spectrum of theannua sea
level by harmonic anays sfound no sgnifcant pesksat
the periodsclaimed by HAK finding that thevariability
near 18.6 yearsis actually present in the residuals,
questioning that the decomposition by HAK doesnot
describethe18.6 yearsvariability. A seven timeslower
amplitudefor the 18.6-year periodicity isclaimed by
STN than claimed by HAK. STN conclude that the
HAK’s mode selection criteria is invalid and none of
themodesidentified by HAK aregetigtically sgnificant.

In their reply, Hansen, Aagaard and Kuijpers?®
confirmthevalidity of their findings no matter of the
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findingsby STN could bedifferent. Ther fveindividua
oscillationsincluding asignificant 18.6 year oscillation
caused by the lunar nodal oscillation (LNO), of
amplitude 70 mm, whereas STN, found other spectra
and aconsequently much smdler amplitudeof theLNO
of 10 mm. These differences are neither strange nor
inexplicable but are caused by thetwo fundamentally
different methods proposed by HAK and STN.Asa
proof of the superior methodol ogy they propose, HAK
evidence how the sum of thefive sea-level oscillations
constitutes atheoretical sealevel curveof theeastern
North Seato the central Baltic Seawhich correlates
very well with the observed sea-level changesfrom 26
long tide gauges of the 160-year period 1849-20009.
HAK stressthe point not acknowledged by STN
that suchidentitication of inter-annual and multi-decadal
oscillatorsand genera trendsover 160 yearsisof great
importance for distinguishing long term, natural
developments from possible, more recent
anthropogenic sealevel changes. STN play the card of
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Figurel: Relativesealevel riseof long term tidegauges about Denmark (imagefrom PSM SL). Asmoretidegaugesare
located in areassubject to subsidencerather than uplift, the naive averaging may suggest a small positive relative rate of
risefor theEastern North Seato Central Baltic Seathat however abetter geographical aver aging may reduceto negligible
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the possible unaccuracies in the assessment of the
periodicitiesand amplitudesof the oscillationsto negate
the existence of the multi-decadal oscillationsonthe
assessment of sealevel rise. More than the method,
what isunder discussionisif thelarger loca reaivesea
leve riseafter 1970isonly part of natural oscillations—
HAK view — or it is a sign of anthropogenic global
warming—the STN view.

Aswewrote many times, Parker, Ssad Saleem and
Lawson®, Parker and Watson!®, Parker(6-12 1317. 27
Parker and Ollier(*®22 a proper understanding of the
present sealeve pattern requiresaproper understanding
of the subsidence of thetide gaugeinstrument and the
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availahility of many yearsof recorded datawithout mgor
perturbations to clear a trend of the multi-decadal
oscillations, that are very well-known to existinthe
climatesncesevera thousandsof years. Therefore, the
discussion may be at the most about the specific
periodicities of the oscillations that dependson their
modd lingassumption and thea gorithm used to compute,
and not certainly on theexistence of these oscillations,
but however itiscommon practiceintheclimate debate
tofocusontheirreevant detailsto avoid discussing the
bigpicture.

Itisunfortunately acommon occurrencethat short
term records in selected areas are used to suggest
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Figure2: Sealevel rateof risefor Aarhus
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relative rates of rise much larger than the recent past
calling these areas hot spots of sealevel rise (seefor
examplethe East Coast of the United States, with sea
level dataandyzedwitha20 or 30 years’ time window).
Itisnot similarly common to use short termrecordsin
complementary areaswheretherelaiveratesof risson
the short window may suggest much smaller than the
recent past sealevel risesand thereforebecaled cold
spotsof sealeve rise (seefor exampletheWest Coast
of the United States, Canadaand Alaskawith sealevel
data analyzed with a 20 or 30 years’ time window).
Similarly, it is very common to propose tide gauge
records from areas subjected to subsidence, as for
examplethe East Coast of the United Statesor the Gulf
of Mexico mostly dueto ground water extraction, and
not discussat dl tidegaugerecordsfrom areas subjected
toupliftasAlaska

What ismeasured by atidegaugeisthelevd of the
searelativeto thetide gaugeinstrument. The coasta
tide gaugeinstrument may be subjected to subsidence
vs. themain land that may be subj ected to subsidence
or uplift. Subsidence may strongly vary from onetide
gauge instrument to another for processesasglacial
isostatic adjustment, land compaction, ground water
extraction, mining and othersfactors. For the specific
of the area of concern for HAK and STN, Figure 1,
thelongterm tide gauges show relative sealevel rises
frompogitiveintheNetherlands, Denmark and Germany;,
to negativein Finland, Norway and Sweden. Thisis
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not theresult of differential globa warming, but only of
thedifferentia subsidenceor uplift of thetide gauge
insrument.

Rather that coupling together different tide gauge
recordsto make an individual tide gauge by stacking
non-homogeneous time series of different length,
different qudity, different completenessand different
subsidence of theinstrument, it only makes senseto
andyzeindividuad tidegauges, and then produce néive
or geographicaly weighted averages of theresults. The
andysisof thetidegaugetimeseriestypicalyincludesa
linear fitting to computetherelativerate of rise of sea
levels, multiplelinesr fittingsto computethetimeseries
of therelativerate of rise of sealevels, and therefore
thesealevd accd eration asitstimerateof change, plus
eventualy the periodogram from aFourier analysisor
dsothefittingwith multiplesnusoidd functions, returning
period, amplitudeand phase of the oscillations. Worth
of mention, theoscillationsare not perfectly snusoida
not only becausethetide gauge signa may bedisturbed,
and the computation of the parametersof anon-linear
fitting may al so depend on the numerical method and
theinitid guess.

Wemay certainly analyzethetimeseriesof Aarhus
(datafrom PSM SL) of time span of data1888 2012
and compl eteness 97%. We may compute arelative
rate of rise (SLR) a any timeasthedope of thelinear
fitting of all the dataavailable up to that time, and we
may then computetherdative sealevd acceeration by
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Figure3: Periodogram of theM SL oscillationsfor Aarhusfrom Wessa.net
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thetimerateof changeof thisparameter, Figure2. Apart
fromthefirst 60 yearsof recording wherethecomputed
SLRmay differ consderably fromthelonger termtrend
as a result of the inter-annual and multi-decadal
oscillations (the spikesfrom below 0 to above4 mm/
year inalocation with along term trend of 0.5-0.6 mn/
year areanindication of how relevant aretheoscillations
not acknowledged by STN), the SLR hasbeenreducing
approx. 1950 to about 1980-1990, and it isincreasing
sincethen. If wedo apply afitting not just with aline,
but withaline plusmultiplesines, then wemay sort out
how much of thisaccd erationis“natural” and how much
IS “man-made”. About 20 and about 60 years
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ostillaionsaredmost everywhereintheworld, it would
not beasurprisea soAarhus could beaffected by such
osdllations.

Wedtart herefrom monthly averagemean sealevels.
Weperformfirst thelinear fitting, thenal thesinusoidal
fittings, by minimizing theresiduals. Thelinear fitting
y=aXx+breturnsa=0.6216 [mm/year] b=5809.6 [mm].
Thefirst sinusoidd fittingy=y +A-sin((x-x )/w) returns
y,=-0.10914 [mm], x =5.02587 [years], w=0.50013
[years] andA=76.19627 [mm]. wishdf theperiodicity.
Thesecond sinusoidd fitting returnsy =0.01487, X =-
1.63399, w=0.24991 and A=-15.79709. As expected,
the short term oscillationsduring theyear areby far the
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Figure4: Measured and computed M SL and residualsfor Aarhus
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srongest, andtheyearly paternisnot exactly snusoidd.
Thefollowingsinusoidd termsarey, =0.03406 mm, X =-
16.37244 years, w=2.84745 years, A=11.00549 mm,
theny,=-0.85026, x =379.83071, w=48.91136, A=-
12.3201,; theny,=0.03738, x =4.26814, w=1.54788,
A=9.87555; then y =-0.03634, x_=8.58698,
w=3.86678 A=9.68653; then y =-0.47654, x =-
132.33205, w=9.44269, A=10.86366 and finally y =
0.00176, x =-1.00831, w=0.5058, A=8.80001.

It does not make too much senseto continuewith
further snusoidd fittings. By usingasinusor acosinus
fitting, asquared sinusor asquared cosinus, but alsoa
different guessof thefitting parameters, itispossibleto
compute somehow different parameters, and theabove
amplitudesmay certainly differ fromtheamplitudesof a
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periodogram astheone of wessa.net of Figure 3. There
isfor surean important oscillations of about 20 years,
andthereiscertainly another important oscillation above
the 20 yearsthat thelimited datado not permittofully
evidence with accuracy, plus higher frequency
osdilldions.

Without being picky on the accuracy of the
estimation of the periodicity or theamplitude, what has
to beconsidered ishow closeisthefittingwithaline
and multiple sines to the measured data, and if the
residuals are trended or not. Figure 4 proposes a
comparison of themeasured and fitted monthly average
mean sealevelsfor Aarhus, plustheresiduds. Figure5
finally proposes a comparison of the computed and
measured SLR for Aarhus.
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Figure5: Measured and computed SL R for Aarhus

CONCLUSIONS

Thesmpleoscillatory modd explainstheincreasing
sealevel risesincethe mid-1980s, asit explainsthe
reducing sealeve rise 1950to mid-1980s. Congdering
themany uncertaintiesin collecting thedata, Figures2
to 5 definitively prove HAK is correct and STN is
wrong, and thefirst sign of accel erating sealeve sisdill
missed for thisareaaseverywhereel seintheworld.
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