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ABSTRACT
We present a novel method to training neural networks for predicting
future variable values of environmental system. Time-series data includ-
ing soil, streamwater and climatic variables were measured hourly over
several month periods in two situations in Qingpu district, 45 kilometers
west Shanghai city, using data loggers and other measuring instruments.
The data sets were used to train neural networks using three different
methods, including a novel, biologically plausible system. Temporal pat-
tern recognition capabilities using each method were investigated. The
novel method proved equally capable in predicting future variable values
using large data sets as the other two methods. An argument is made for
this method, named the ‘Local Interaction’ method, providing valid com-
petition to other neural network and statistical methods in the detection
of  patterns and prediction of  events in complex environmental systems.
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INTRODUCTION

In many cases, environmental system situations
are so complex and non-linear that useful models of
their dynamics can only be obtained through empiri-
cal data, rather than through analytical equations.
Statistical analysis of ecological system data sets can

be difficult when confronted with systems in which
massive amounts of data are generated, for example,
through data loggers.

Over the past decade, increased computer power
has made the implementation of various artificial
intelligence (AI) theories practicable[1]. show that
neural networks are appropriate in situations where
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the underlying relationships are poorly known[2]. In-
vestigated optimal structure for neural networks used
to forecast chaotic time series, of which environ-
mental data are a good example.

A common problem encountered when applying
neural networks to the modeling of environmental
systems is the architecture of the neural network.
Even amongst researchers familiar with neural net-
work use, the implementation of a known neural
network to deal with a specific situation is often ac-
companied with a great deal of trial and error, usu-
ally in finding the correct number of nodes, the sys-
tem of node connection or even the training algo-
rithm to use[3,4]. discussed this problem and a pos-
sible system of solving it using a Bayesian model
selection procedure. However, their method was only
applicable to single-output neural networks and so
cannot be applied to the multiple-input, multiple-
output models required here. The novel method pre-
sented here, named the “Local Interaction” method,
is intended to eliminate many of the problems in-
herent in neural network design.

A popular neural network algorithm is that of
back-propagation, the principles of which are dis-
cussed in following sections. Here we apply a novel
NEURAL NETWORK training method that is more
biologically realistic, in that connection adjustments
are based purely on the activations of sending and
receiving nodes. This method is compared to the
backpropagation method by applying both ap-
proaches to the analysis of time-variable environ-
mental data, in an effort to predict both variable val-
ues and specific “events”[5]. The time-variable data
used were obtained from data loggers attached to
environmental sensors.

Data resource
A variety of methods were used to obtain envi-

ronmental variable measures. In the field, standard
data loggers and sensing equipment were used[6]. In
each of the two situations, measurements were made
of variables that were of specific interest to research-
ers and that were believed to be related to each other
in some manner.

Dianpu river is a small stream that forms part of
the huangpu river in west Shanghai and its

backswamp is typical of many silt areas in the east
China. The Dianpu river watershed has an altitude
range of 3-12m and consists largely of reed swamp-
land.

Waterstream was continually monitored at a
fibreglass flume installed close to the outflow of
Dianpu river. Discharge was recorded in every 5 min
and data were downloaded from loggers at both
flumes every 2 weeks. Stream temperature was also
logged simultaneously with a temperature probe in-
serted below the stream surface close to the flume[7].
Precipitation was measured by tipping-bucket rain-
gauges connected to loggers, located adjacent to the
stream at altitudes of 3 m and 10 m. Ambient air
and soil temperatures were also monitored continu-
ally using thermographs; soil thermographs were in-
stalled at the depths of 0.15-0.20m(shallow) and
0.45-0.50m (deep).

The Dianpu river data variables used were stream
flow rate, stream temperature, precipitation rate, air
temperature and soil temperature at a specific depth
(50 cm). Measurements were made on an hourly ba-
sis during the months January-June 2004.

The weather mast was sited near Xiayang town,
owned by Shanghai Meteorological Observatory
(SMO). Parameters recorded were temperature (°C),
relative humidity (%), solar radiation (W m-2), wind
speed (m s-1) and wind direction (°). Data were re-
corded hourly, from the 1th of  June, 2005 until the
15th of October, 2005.In both data sets, the infor-
mation is organized so that all variables measured at
a particular time are given as neural network inputs[6],
followed by the next time step information and so
on. The values of each variable are standardized to
fit on a scale of 0 to 1 in order that neural networks
would be able to make practical use of  the informa-
tion.

Neural network design and operation
For all neural networks used throughout this

work, the weights of synaptic connection are in the
range [-1, 1], and node activations are in the range
[0, 1], with activation y given as the following func-
tion of input x:

)cxexp(1
1y

−+
= (3)
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This gives the activation curve given in figure 1.
1.Backpropagation

The backpropagation training algorithm is an ad-
aptation of another training algorithm, namely the
delta rule[8,9]. If  we suppose that the error between
actual and target pattern for a particular output node
is given as some function E =E(w1,w2,w3,...) of
the synapse weights connected to that node, as shown
in figure 1, then in order to minimize the error we
have to find the lowest point on the curve. For any
function y=y(x) we have

)
dx
dy(dxdy = (4)

If we put

)
dx
dy(dx α−= (5)

with α>0, we then get
2)

dx
dy(dy α−= (6)

which implies that we have reduced the func-
tion by stepping down the slope. This process can
be repeated until the local minimum is reached.

In standard practice, the error on node j is de-
fined as the squared difference between the actual
and the target values:

2
jjj )at(E −= (7)

which gives us

)at(2
da
dE

jj
j

j −−= (8)

We know that
)aw(fa i

i
ijj ∑= (9)

If we ignore the general case for the moment
and assume simply that

i
i

ijj awa ∑= (10)

ijj
ij

j a)at(2
dw
dE

−−= (11)

with limits at (-1) and (1), then we obtain
If we substitute dwij for dx and dE for dy in Eq. (5)
we get

ijjij a)at(dw −α= (12)

If we keep the ƒ (given in Eq. (3)) in Eq.(9) and
work out Eq.(12) again, we obtain the completed
delta rule:

ijjjjij a)at)(a1(caw −−α=∆ (13)

The extra terms here, cα, (1 - α) are collectively
given the symbol σj.

The mapping of an input layer onto an output
layer is often sufficient for the system being mod-
eled. However, some systems are of sufficient com-
plexity that additional layers are required. The delta
rule works for two-layer neural networks, but can-
not be applied directly to neural networks with hid-
den layers because it is necessary to know the target
value for each node. For hidden layer nodes, the tar-
get value cannot be predicted.

This problem is resolved by first calculating the
error on the output layer nodes and then using these
values to determine the error (tj - α j) for hidden layer
nodes. This is where the term backpropagation comes
from. Each of the hidden nodes i is responsible for
activating a node j in the next layer, for which the
error has already been calculated. The total error for
i equals the sum of wij δj , where j includes all of the
nodes that i is responsible for activating and d is the
error of node j. Node i is therefore responsible for a
certain amount of error in later nodes, an amount
that is used as its own error definition. So, the alter-
ation to synapse wij is given by

ijk
k

kiij a)w(w ∑δασ=∆ (14)

and the summation jk
k

k w∑ δ  equals δj for calculation
of  the next layer of  alterations. For each of  the three
data sets used, the backpropagation network was
composed of the input layer, two hidden layers of
50 nodes each (fully connected) and the output layer.
The value of α was set at 0.01, c was set at 5 through
a trial-and-error process, and the network was trained
until the average error over the last 1000 steps no
longer decreased.
2.Local interaction method

The backpropagation method is the most popu-
larly used neural network training method, particu-
larly in situations where a transformation from input
to output sets is required, for example, value classi-
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fication. However, it relies heavily on the biologi-
cally implausible assumption that individual neurons
in hidden layers of a network can have knowledge
of the error associated with their activation. Bio-
logically plausible models of  the nervous system state
that neurons have no individual memory or aware-
ness of their actions, and that their behavior is de-
pendent only upon their own activation history and
the activation of nodes to which they have synaptic
connections.

For the backpropagation method, the value of  c
for each node is fixed at some predetermined con-
stant. Higher (lower) values of c make the activa-
tion curve flatter (steeper) around the zero point, as
can be interpreted from figure 1. The activation curve
has a higher gradient nearer to the zero point, and so

in the novel method the value of c is not fixed, but
can be adjusted. Using the same activation curve as
in the backpropagation method (Eq.(1)), this adjust-
ment takes the form

|)a5.0|25.0(c ii −−β=∆ (15)
and is shown in figure 2. The value of β is set at
0.01. The synapse adjustment algorithm is designed
to alter synapses in such a way that their weighting
reflects the importance of  their connection. For two
nodes that are strongly coupled the synapse will be
stronger, while for two nodes whose activations have
little correlation the synapse will be weak. Because
of this, synaptic reinforcements depend upon the
difference between a node activation and its expected
activation due to the last several steps.

Figure 1: Activation curve for neural network nodes

Figure 2: Adjustment curve for c activation constant
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The expected activation ~
a for a particular node

at time step t is calculated using Eq.(16):

)aa(1.01aa 1t
~

1tt
~~

t −− −+−= (16)

The difference between actual and expected node
activation )(

~
aa −  is calculated for both the sending i

and receiving j node at the end of each synapse, and
the synaptic adjustment ∆wij is given by the follow-
ing equations:

)]aa()aa[(w j
~
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~

iij −+−α=∆ (17a)
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iij −−−α=∆ (17c)
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−−
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~
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~
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)0,0( jjii <α−α<α−α
−−

where a is set to 0.01.
3. Simulated annealing

In a manner similar to that of backpropagation,
a method of reducing the error between actual and
predicted outputs is sought. However, this method
does not rely on adjusting the synaptic weights ac-
cording to the measured error, but rather uses a sto-
chastic method to gradually improve the perfor-
mance of the system towards some optimal state.
The simulated annealing method as applied here is
best described using the following algorithm:
1. Measure the fitness of the system.
2. Adjust some parameter of the system by a rela-

tively small amount.
3. Again measure the fitness of the system (error

between actual and predicted values).
4. If the fitness has improved then retain the

change. If not, discard it.
5. Return to 1.

In the case used here, the system will be a neural
network with the same topology and behaviour as
that used in the backpropagation section, but with a
different method of synaptic adjustment. Synaptic
weights will be initially randomized, and will be the
‘parameter’ of the system that is adjusted by a small
level. In each loop of the algorithm above, one syn-
apse will be selected at random and adjusted by
±0.01, with the sign also selected at random. In or-
der to avoid the system settling into some local mini-
mum, the adjustment will be retained 1% of the time
even if the fitness of the system (measured as the
mean prediction error) does not improve.

There are parallels here with genetic algorithms,
in the use of more than one input parameter and the
definition of system ‘fitness’. Indeed it is felt here
that the method as it has been applied is a combina-
tion of simulated annealing and GAs, as the con-
nections are being treated as components of the sys-
tem that are subject to evolutionary pressures while
the overall system is being treated as a case problem
in minimizing error or ‘energy’ levels. However, as
GA methods rely on the use of selection from a pool
of candidates, it is felt that attributing the imple-
mentation to simulated annealing is more accurate.

RESULTS

For each of  the three NN methods, five repeti-
tions were made for each of  the two data sets. In
each case, the network was adjusted until system
performance (averaged over the last 1000 training
steps) stopped improving. In the case of  the
backpropagation system this took approximately
15000 steps, while for the local interaction and simu-
lated annealing the number of steps taken were 5500
and 420000 steps, respectively.

Dianpu river
Figure 3 gives the histogram of prediction errors

for the Dianpu River data, allowing comparison of
the three methods. For the simulated annealing and
Local Interaction methods, over 50% of the predic-
tions were within 10% of the correct values, and
over 90% were within 30%. For backpropagation,
the results were less accurate (28% within 10%, 51%
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within 30%).

Xiayang town
Figure 4 gives a comparable histogram of pre-

diction errors for the Xiayang town data set, show-
ing similarities and differences with the Dianpu River
data set. Here, the annealing and backpropagation
methods prove more accurate than the Local Inter-
action method, although for the novel method 50%
of  the predicted values are within 20% accuracy.

DISCUSSION

A novel neural network training method has been
developed that is more biologically plausible than

the traditionally used methods of backpropagation
or simulated annealing. This method, when applied
to complex system time series data sets, gives com-
parable results to the two more traditional methods
used. Furthermore, the Local Interaction method is
a strong contender for automatic temporal attractor
development and retrieval for two reasons.

The final product of the evolution and training
methods is a neural network-based model specific
to each investigated situation, in which the user’s
given inputs result in predicted values for the vari-
ables 1 h ahead. These outputs can then be used as
inputs for another prediction cycle, allowing the user
to obtain predictions for further forward in time.

Figure 4: Error histogram for Xiayang town data set
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Figure 3: Error histogram for Dianpu River data set
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Given that the predictions for a single hour ahead
are not and never will be 100% accurate, the reli-
ability of the system will be lower for predictions in
the long rather than the short term. It is interesting
to note that if  the system’s long-term predictions for
many different sets of starting values are compared,
there is no tendency towards a stable “attractor”.
Rather, the system behaves chaotically, with vari-
able predictions covering the entire range of possi-
bilities.

While it is fair to say that research using Neural
networks is already far removed from biological plau-
sibility due to oversimplification or the use of con-
trived mathematical methods, it is also fair to say
that attempting to maintain biological plausibility may
allow researchers to compare the abilities of their
systems against the tried and tested reliability of or-
ganic learning systems. It is capable of  predicting
the behavior of a system over several time steps,
given only starting values. Non-feedback methods
such as backpropagation are not capable of this, and
whereas a simulated annealing method may allow a
temporal sequence recognition system to work, it will
lack the flexibility of the Local Interaction method.
The Local Interaction method is a more efficient train-
ing technique in that (a) it is more rapidly trained
than the other two methods, and (b) it avoids the
“local minima” problem that the others have, by not
attempting to minimize errors in output. This new
method shows good potential, but needs to be evalu-
ated further. Future work includes carrying out the
training procedures used here on other data sets to
further compare their abilities. Also, data sets con-
taining non-temporal data will be used to compare
the various methods, and to investigate the further
applicability of each.

One important consideration is that of solving
the ‘black-box’ nature of neural networks, as de-
scribed. The methods they describe for analyzing
trained neural networks would give insights into
which factors are most important, and how the fac-
tors interact. Neural networks can therefore provide
a method of modeling environmental systems, ei-
ther as a ‘black-box’ system or through subsequent
analysis of  trained networks. Spatial as well as tem-
poral analysis can be performed by such trained

models, and may provide insights which classical sta-
tistical analysis methods cannot. Further work is
being carried out on prediction of  plant array struc-
tural features using a variety of  NEURAL NET-
WORK methods.
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