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ABSTRACT

A mathematical method of determining the values at equilibrium and the
constant rates in inter-conversion process of conformational labile
molecules is proposed. No measuring method is used. In most of the
cases, at equilibrium, the concentrations of the main species are equal.
Thus, we have equilibrium of concentrations too. The symmetry plays a

central role. © 2012 Trade Sciencelnc. - INDIA

INTRODUCTIONAND PRELIMINARIES

Inter-conversion processesof configurationaly la-
bilemoleculesisolated from al externd influences, are
smilar tothereversblefirst-order reactions:
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Themoleculesin gtates[, [R] aregoing to rearrange
such that thosefrom one state to become mirror image
of those of the other state.

Determining the constant ratesk, k, isanimpor-
tant and quitedifficult task.
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Thisproblem, aswell assimilar problemsfor con-
secutive and paralldl reactions have been studied by
many authorg?357, In®l, an exponentially stripping
method and |least square approach are used to obtain
constant ratesfrom analytical and smulatingdata. The
referenceson thissubject arefar from being compl ete.
Thepresent review isanimproved version of 9,

By addition of equations, oneobtains[g +[R] =
C, where C >0 isconstant. By theinitial conditions,
this constant can be equal to one. At least one of the
rate constants appearing below ispositive. Derivation
inthesecond equationyieds:
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Theproblemistofindtherate constantsk,, k.. Inthe
present paper, we determinetherate constants of (1),
and consider aparticular case, whentheinter-conver-
sion occursthrough an achird intermediate, intwofirst
order equilibriums:
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Aok (sl RD-2k ),
[A]+[B]+[c]=1
ki[Al =k [sl =k s[R]. =[s].
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Heresolving Cauchy problemsrelated tothe systemis
the““‘easy’ problem, whiledetermining therateconstants
isthedifficult ond*. Thefollowingtwoinitial dataon
pure statesare considered:

[Al,=1,  [9],=1

By usingdementsof real and complex analysis®?, both
constant rates are determined in Theorem 2.1 from
below.

ONTHE VALUESAT EQUILIBRIUM AND
CONSTANT RATES

Theorem 2.1

(i) Thegeneral problem described by (1) leadsto
thefollowing vauesat equilibrium, respectively of the
time-momentt .:

k, =k, =k,
[skt)=

t _t1/2

[sl.=[RL=1/2

(w2)a+re ) [RIt)=@/21-e*)t20 (4
In2/ 2k, t =1/(2k)

E.max|(0,q0)

isits

E,max|0,00

Here E(t) isthekineticenergy at t, and t
grictly positivemaximum point.
(i) Theoptimd solutionis:

k=1/2[slt)=(/2)1+e")
[RIt)=(1/2)1-e*)t201t,, =12 tc gony =1 O

Proof
(i) From (1), (2) weinfer that:

xzogecﬁtzofo_qy C—

o)=Y - 1- ool (k,/[R1L)). 0(0)=0, 0-)=1,

v(t)=1-o(t)=exp(- (k,/[R].t)= w(0) =1, y(o-)=0.
Thefunction ¢ increases, whiley isdecreasingin [0,
). Their graphs have as unigue common point

L1
M(t 'E) . Thuswemust have:

1 . k), _[RLIn2
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Tofindthevauesof therate constantsin termsof equi-
librium-values, weobservethat one of theeigenvaues
of thematrix A of thelinear differential system (1) is
zero, and theother oneis

A, =-(k, +k,),

the associated eigenvector being v = (1/v2,-1/+2). It
followsthat therange of thelinear operator defined by
Aistheonedimensiona subspacegeneratedby v . De-
composing any vector from R2 as Fourier sumrelated

to the basisformed by the eigenvectors of A, oneob-
tans

A([[s]]] =k, +k X[SHRD (/2 ~1/v2) -2 ~1142)=

d([s)_ -1) k, +k,

a[[R _klexp(_(k1+k2)t{ 1]—72 (sl-RD-12) (6)
[S]_[R] __k koo _ 1 (ko) _ L (karkok

2 Tk, _E([S°]_[R°])e =2°

=k, =k,>[s].=[RL=1/2

Inserting these conclusionsin (2) yields:
[SI(t) = (V2)(1+e*), [R](t) = (/2)(1- %), t20
Because of thesymmetry of thegraphsof thefunctions

from above with respect to thedemy-axisy = 1/2, we
have:

1/4=(1/2)1- V) t,,, =In2/ 2K =t".
Maximizing over k thekinetic energy E(t, k) = 2k?
exp(- 4kt), for positivefixedt, weobtain:

‘ZE (2K - act)e ™ =0t o =1/(2K)> 1, = o
maX,(q,..) E(t)= 2k *e > < 2k* = E(0).
Relation (7) reflectsthe hyperbolic dependence between
tand k.

(i) Assumefirgtly that: 2k < 1. Consider themodi-
fied Jukovsky’sand ytic transformation on the complex
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planewith zero del eted:

J(z,2k)=1z+2k z,|z| <1

Then asimplecomputation showsthat 2k < 1 implies
that thisfunctionisunivalent intheunit disk U. It fol-
lowsthat J-, 2k) satisfiestherequirementsof Theorem
14.13¢ (Theorem on the area; seead so). Application
of thisresultyields:

k| =2k < 1.

Itfollowsthat 2k = 1isthemaximal possiblevaue
suchthat J(-, 2k) to be univalent intheunit disk. This
leadstoaminimal valuefort,,=In2/(2k) =In2,t_ _
= 1/(2K) = 1, under the samerequirement on J(-, 2K).
Of coarse, smaller valuesfor the sametimesoccur in
caseof 2k > 1. However, avery large 2k isunredlistic
a theinitia timeand leadsto exceeding thetota kinetic
energy consumed after itsmaximum isattained. Appli-
cation of the abovereasoning for J(-, 1/(2k)), shows
that 1/(2k) = 1 =2k isthelargest value of 1/(2k), and
thesmallest value of 2k, for which thetransformation
J(-, 1/(2k)) isunivaent, inthesecond case: 2k > 1. This
case must be considered because of inconveniences of
alargek mentioned above. Hereisanother argument
of congdering 2k = 1 asoptimal vaue. If wedefinethe

-1

isaprobability dengity of adistribution function associ-
atedto arandomvariable. Thisrandomvariablehasa
norma Gauss(0, 1) distributionif andonly if k=1/2.
Findly observethat thematrix A of thedifferentid sys-
tem (1) issymmetric, witheigenvauesO, - 2k, and by
Caylay-Hamilton Theorem, it satisfiesthebasicre ation:

A2=-2kA=>A"=(-2k)""A=(-1)"A
|a|=]al=1e 2k =1

evenfunction g(x) = exp(- 4kx?), then h(x

That iswehavethelast relationif and only if thenorm
of thematrix Aisone. Inthiscase, A appliesthenor-
malized eigenvector y = (1/JE,_1/J§) associatedtoA
=-2k =-lintoitsopposed vector. Moreover, wehave:
A= %(_11 ! ) and - A, exp(— tA), (t > O)

isasymmetric positivesemi-definitematrix of normone,
respectively positive definitematrix of norm € Thevec-
tor y isafixed point for -Aandfor h(A), whenever his

—==> Review
anayticinadomain containingtheset {0, 1} = o(- A).
Moreover, we have:

(-A?=-A,

whichmeansthat -Aisaprojector if andonly if 2k = 1.

Theorem 2.2
For any initia data, thesolutionof (3)is:.

sl - [([A Ve - 1+ (5h - [Rb etk o}
RI-[sl. - [([A bJeo| - {54 -[Rbeot-
[A]—[AL=([AL—[AL)exp[—[;ttj,

[sl. =[RL. k.[AL =k ,[R].

g

Proof

Theequationin[A] can be solved separately, replacing
[§ +[R] by 1-[A]. Subtraction and addition of the
first two equationsleadto smpleequationsin[g - [R],
[S+I[R].

Theorem 2.3

Assumethat in (3) wehave[A], = 1. Inthiscase,
thenon-trivia solutionis:

[AlL=[R]l.=[S].=1/3,k, =k , =k,
[so)=[RIt)=1/3(2-e ),

©)
[A)t)=(1/3)1+2e7*) 1> 0.
Theoptimal solution correspondsto k = 1/12

[SI() =[S](t) = (U3)(1- &™),
[AL() = (U/2)(1 + 26, >0

Proof

Wemust have[S,=[R],
[A].# 0, oneobtains:
[S]_ [S]e = [R]_ [R]e = _[R]e exp(— k —1t /[A]e)'
[Al-[al = @-[a])ep(-k_t/[AL).t=0
From (11) weinfer that
[S, [R], hence[S] +[R]
areincreasngwitht, and [A] isadecreas ng function of
t. Wecanwritethesystem (3) as:

d(sl+[R) _ 2k, [A]- 2« ,[s],

dt

AA]_ g (g2 [a) [aL =2 (5]+ [R)O)= 0

Observe that thisis a Cauchy problem of type (1),

(10)

=0, sothat from (8), if

(1)

—am ngogecﬁnofo_qy
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where:

[R]|—> [S]+[R], [S]I—) [A] k, > 2k, ,k, —2k_,
Following theproof of Theorem 2.1, we must have:
2k, =2k =2, [S].=[Rl. =[AL =1/3=
[skt) = [RYt) = (1/3)1- ),

[a)t)= (u/ 3)(1+ 267
Theserdationsprovethefirst assertions(9) fromthe
gtatement. Theoptimal isgiven by extendingthekinetic
energy function

(Ze—Gk_lt + 4kt ) _ g0kt

by parity tothereal axes, and considering the attached
digtributionfunction:

(12)

6e—6k _1>(2 e—6k _;|_>(2

o [em e VBB
R

f(x):

Then fisa(0, 1) distribution functionif and only if
o=(12k ,)=1&k_, =k, =1/12. Theserelationsyield
thenormal (optimal) solutions(10).
Theorem 2.4

Assumethat [§,= 1. Thentheonly possible solu-
tionis
2k, = 2k _; = 2k, [S](t)-1/3= (1/ 2)|(1/ 3> + &}
[R](t) 1/ae 1/2)[ (173 * —e™| [A]t)= 1/ 3)1-e)
Theoptimd solutionis:

K, =k , ==k =1/12,[S](t)-1/3=(1/2)(1/3)e V' 4+ /2]
[R](t ~1/3=(1/2|(1/3) @ —e D] [a)t)=(1/3f1-e ¥ ) t2 0

Proof
Relations(8) and the present initid datayield:

[s]-[sL. = S [k expl- kit /[AL)+ expl- k_t)}

[RI- R} = S[AL el k it/ [aL)- exol-k 0} 49
[A]-[AL = -[AL exp(-k_it/[A].)

By similar argumentsto those of Theorem 2.3, based
on theproof of Theorem 2.1, onthesystem (3), [ +
[R] being decreasing, [A] increasing, andrelations (13),
wehave:

ky=k_ =k [al =[s].=[R]. = 1/3,

[skt)-1/3= (1/2f (3} + e

[R)t)-1/3= (1/ 2)(1/3)e™ - 'k*]
[A]t)=1/301-e*)

zzogecﬁtzofo_qy C—

Asintheproof of theorem 2.3, theoptimal solutionis
obtanedfork =k , =1/12. Now theconclusionfollows.

CONCLUSIONS

A generd mathematica method for solvingtheprob-
lems mentioned in theAbstract isproposed. No mea-
suring procedureisinvolved. Determining condant rates
requiresoptimality conditionsmotivatedin Theorem 2.1,
(i) In all the cases considered above, thesefinal vaues
areequa oneto each other. Hence, the concentrations
of thestaes[g, [R] areequd a infinity. Themolecules
of the state[R] are exactly mirror images of thosein
state[S]; this case model s equilibrium between spe-
cies. Connectionsto other fildsappear partidly in Theo-
rem 2.1. Under natural constraints, both constant rates
can bedetermined (Theorem 2.1, (ii), and the optimal
solutionsfromtheother theorems). Theequdlity at equi-
libriuminall of the considered cases|eadsto the maxi-
mal values of their product. Thisisaconsequence of
themeaninequdity.
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