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ABSTRACT
A mathematical method of determining the values at equilibrium and the
constant rates in inter-conversion process of conformational labile
molecules is proposed. No measuring method is used. In most of the
cases, at equilibrium, the concentrations of the main species are equal.
Thus, we have equilibrium of concentrations too. The symmetry plays a
central role.  2012 Trade Science Inc. - INDIA
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INTRODUCTION AND PRELIMINARIES

Inter-conversion processes of configurationally la-
bile molecules isolated from all external influences, are
similar to the reversible first-order reactions:

This problem, as well as similar problems for con-
secutive and parallel reactions have been studied by
many authors[1-3,5,7]. In[3], an exponentially stripping
method and least square approach are used to obtain
constant rates from analytical and simulating data. The
references on this subject are far from being complete.
The present review is an improved version of[5].

By addition of equations, one obtains [S] + [R] =
C, where C > 0 is constant. By the initial conditions,
this constant can be equal to one. At least one of the
rate constants appearing below is positive. Derivation
in the second equation yields:
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The molecules in states [S], [R] are going to rearrange
such that those from one state to become mirror image
of those of the other state.

Determining the constant rates k
1
, k

2
 is an impor-

tant and quite difficult task.

(1)

id13026031 pdfMachine by Broadgun Software  - a great PDF writer!  - a great PDF creator! - http://www.pdfmachine.com  http://www.broadgun.com 

mailto:olteanuoctav@yahoo.ie


196 Determining the values at equilibrium and constant rates

Review
BTAIJ, 6(7) 2012

BioTechnology
An Indian Journal

BioTechnology

The problem is to find the rate constants k
1
, k

2
. In the

present paper, we determine the rate constants of (1),
and consider a particular case, when the inter-conver-
sion occurs through an achiral intermediate, in two first
order equilibriums:
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Here solving Cauchy problems related to the system is
the �easy� problem, while determining the rate constants
is the difficult one[1,4]. The following two initial data on
pure states are considered:
[A]

0
 = 1; [S]

0
 = 1.

By using elements of real and complex analysis[3,2], both
constant rates are determined in Theorem 2.1 from
below.

ON THE VALUES AT EQUILIBRIUM AND
CONSTANT RATES

Theorem 2.1

(i) The general problem described by (1) leads to
the following values at equilibrium, respectively of the
time-moment t

1/2
:
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Here E(t) is the kinetic energy at t, and t
E,max|0,

 is its
strictly positive maximum point.

(ii) The optimal solution is:
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(i) From (1), (2) we infer that:
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To find the values of the rate constants in terms of equi-
librium-values, we observe that one of the eigenvalues
of the matrix A of the linear differential system (1) is
zero, and the other one is


2
 = -(k

1
 + k

2
),

the associated eigenvector being  2/1,2/1v 
 . It

follows that the range of the linear operator defined by
A is the one dimensional subspace generated by v

 . De-
composing any vector from R2 as Fourier sum related
to the basis formed by the eigenvectors of A, one ob-
tains:
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Inserting these conclusions in (2) yields:
[S](t) = (1/2)(1 + e-2kt), [R](t) = (1/2)(1 - e-2kt), t  0

Because of the symmetry of the graphs of the functions
from above with respect to the demy-axis y = 1/2, we
have:
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Maximizing over k the kinetic energy E(t, k) = 2k2

exp(- 4kt), for positive fixed t, we obtain:
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Relation (7) reflects the hyperbolic dependence between
t and k.

(ii) Assume firstly that: 2k  1. Consider the modi-
fied Jukovsky�s analytic transformation on the complex
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plane with zero deleted:
J(z, 2k) = 1/z + 2k z, |z| < 1

Then a simple computation shows that 2k < 1 implies
that this function is univalent in the unit disk U. It fol-
lows that J(, 2k) satisfies the requirements of Theorem
14.13[6] (Theorem on the area; see also[4]). Application
of this result yields:
|2k| = 2k  1.

It follows that 2k = 1 is the maximal possible value
such that J(, 2k) to be univalent in the unit disk. This
leads to a minimal value for t

1/2
 = ln 2/(2k) = ln 2, t

E,max|(0,

)
 = 1/(2k) = 1, under the same requirement on J(, 2k).

Of coarse, smaller values for the same times occur in
case of 2k > 1. However, a very large 2k is unrealistic
at the initial time and leads to exceeding the total kinetic
energy consumed after its maximum is attained. Appli-
cation of the above reasoning for J(, 1/(2k)), shows
that 1/(2k) = 1 = 2k is the largest value of 1/(2k), and
the smallest value of 2k, for which the transformation
J(, 1/(2k)) is univalent, in the second case: 2k > 1. This
case must be considered because of inconveniences of
a large k mentioned above. Here is another argument
of considering 2k = 1 as optimal value. If we define the

even function g(x) = exp(- 4kx2), then     
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is a probability density of a distribution function associ-
ated to a random variable. This random variable has a
normal Gauss (0, 1) distribution if and only if k = 1/2.
Finally observe that the matrix A of the differential sys-
tem (1) is symmetric, with eigenvalues 0, - 2k, and by
Caylay-Hamilton Theorem, it satisfies the basic relation:
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That is we have the last relation if and only if the norm
of the matrix A is one. In this case, A applies the nor-

malized eigenvector  2/1,2/1v 
  associated to 

= -2k = -1 into its opposed vector. Moreover, we have:
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is a symmetric positive semi-definite matrix of norm one,
respectively positive definite matrix of norm et The vec-
tor v

  is a fixed point for -A and for h(A), whenever h is

analytic in a domain containing the set {0, 1} = (- A).
Moreover, we have:
(- A)2 = -A,

which means that -A is a projector if and only if 2k = 1.

Theorem 2.2

For any initial data, the solution of (3) is:
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Proof

The equation in [A] can be solved separately, replacing
[S] + [R] by 1 - [A]. Subtraction and addition of the
first two equations lead to simple equations in [S] - [R],
[S] + [R].

Theorem 2.3

Assume that in (3) we have [A]
0
 = 1. In this case,

the non-trivial solution is:
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The optimal solution corresponds to k = 1/12
[S](t) = [S](t) = (1/3)(1 - e-(1/4)t),
[A](t) = (1/2)(1 + 2e-(1/4)t), t  0 (10)
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From (11) we infer that
[S], [R], hence [S] + [R]

are increasing with t, and [A] is a decreasing function of
t. We can write the system (3) as:
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Observe that this is a Cauchy problem of type (1),
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where:
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Relations (8) and the present initial data yield:
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By similar arguments to those of Theorem 2.3, based
on the proof of Theorem 2.1, on the system (3), [S] +
[R] being decreasing, [A] increasing, and relations (13),
we have:

     

       
       
    kt3

ktkt3

ktkt3

eee11

e13/1tA

,ee3/12/13/1tR

,ee3/12/13/1tS

,3/1RSA,k:kk

















As in the proof of theorem 2.3, the optimal solution is
obtained for k = k

-1
 = 1/12. Now the conclusion follows.

CONCLUSIONS

A general mathematical method for solving the prob-
lems mentioned in the Abstract is proposed. No mea-
suring procedure is involved. Determining constant rates
requires optimality conditions motivated in Theorem 2.1,
(ii) In all the cases considered above, these final values
are equal one to each other. Hence, the concentrations
of the states [S], [R] are equal at infinity. The molecules
of the state [R] are exactly mirror images of those in
state [S]; this case models equilibrium between spe-
cies. Connections to other fields appear partially in Theo-
rem 2.1. Under natural constraints, both constant rates
can be determined (Theorem 2.1, (ii), and the optimal
solutions from the other theorems). The equality at equi-
librium in all of the considered cases leads to the maxi-
mal values of their product. This is a consequence of
the mean inequality.
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