
INTRODUCTION

Many complex real world problems in nature are due
to nonlinear phenomena. Nonlinear processes are one of
the biggest challenges and not easy to control because the
nonlinear characteristic of the system abruptly changes due
to some small changes of valid parameters including time.
Thus the issue becomes more complicated and hence needs
ultimate solution. Therefore, the studies of approximate
solutions of nonlinear differential equations (NDEs) play
a crucial role to understand the internal mechanism of
nonlinear phenomena. One of the most important
branches is plasma physic. The discussed equation occurs
in the modeling of certain phenomena in plasma physic[28].
Advance nonlinear techniques are significant to solve in-
herent nonlinear problems, particularly those involving
differential equations, dynamical systems and related ar-
eas. In recent years, both the mathematicians and physi-
cists have made significant improvement in finding a new
mathematical tool would be related to nonlinear differen-
tial equations and dynamical systems whose understand-
ing will rely not only on analytic techniques but also on

numerical and asymptotic methods. They establish many
effective and powerful methods to handle the NDEs.

The study of given nonlinear problems is of crucial
importance not only in all areas of physics but also in
engineering and other disciplines, since most phenomena
in our world are essential nonlinear and are described by
nonlinear equations. It is very difficult to solve nonlinear
problems and in general it is often more difficult to get an
analytic approximation than a numerical one for a given
nonlinear problem. There are many analytical approaches
to solve nonlinear differential equations. One of the widely
used techniques is perturbation[1-4], whereby the solution is
expanded in powers of a small parameter. However, for
the nonlinear conservative systems, generalizations of some
of the standard perturbation techniques overcome this
limitation. In particular, generalization of LP method and
He�s homotopy perturbation method yield desired results
for strongly nonlinear oscillators[5-11].

The harmonic balance method (HBM)[12-22] is another
technique for solving strongly nonlinear systems. Usually, a
set of difficult nonlinear algebraic equations appears when
HBM is formulated. In article[22], such nonlinear algebraic
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equations are solved in powers of a small parameter. Some-
times, higher approximations also fail to measure the de-
sired results when a

0
 >> 1. In this article this limitation is

removed. Approximate solutions of the same equations
are found in which the nonlinear algebraic equations are
solved by a new parameter. The higher order approxima-
tions (mainly third approximation) have been obtained
for mentioned nonlinear oscillator. However, a suitable
truncation of these algebraic equations takes the solution
very close to the previous one but it saves a lot of calcula-
tion. This is the main advantage of the method presented
in this article.

THE METHOD

Let us consider a nonlinear differential equation

]0)0(x,a)0(x[),x,x(fxx 0

2

0   (1)

where )x,x(f   is a nonlinear function such that

)x,x(f)x,x(f   , 
0
  0 and  is a constant.

Consider a periodic solution of Eq. (1) is in the form
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where a
0
,  and 2 are constants. If  = 1 � u � v �  and

the initial phase 
0
 = 0, solution Eq. (2) readily satisfies the

initial conditions ]0)0(x,a)0(x[ 0   .

Substituting Eq. (2) into Eq. (1) and expanding )x,x(f 

in a Fourier series, it converts to an algebraic identity
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By comparing the coefficients of equal harmonics of
Eq. (3), the following nonlinear algebraic equations are
found
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With the help of the first equation, 2 is eliminated
from all the rest of Eq. (4). Thus Eq. (4) takes the follow-
ing form
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Substitution  = 1 � u � v � , and simplification,
second-, third- equations of Eq. (5) take the following
form
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where G
1
, G

2
,  exclude respectively the linear terms of u,

v, .
Whatever the values of 

0
 and a

0
, there exists a pa-

rameter 
0
(

0
, , a

0
) << 1, such that u, v,  are expandable

in following power series in terms of 
0
 as
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2
,  are constants.

Finally, substituting the values of u, v,  from Eq. (7)
into the first equation of Eq. (5),  is determined. This
completes the determination of all related functions for
the proposed periodic solution as given in Eq. (2).

EXAMPLES

Let us consider an important and interesting nonlin-
ear differential equation which was studied in plasma
physic[28]
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
 (8)

The Eq. (8) can be written as
01xx  (9)

We consider the first-order approximate solution of
Eq. (9) is

)t(cos(a)t(x 10  (10)

Now substituting Eq. (10) into the Eq. (9) it takes the
following form
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Equating the constant term equal to zero the first ap-
proximate angular frequency is
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Therefore the first-order approximation solution of
Eq. (9) is Eq. (10) where 

1
 is given by Eq. (12).

We use the solution of the form of Eq. (2) a second-
order approximate solution of Eq. (9) is

)t3cos(u)tcos((a)t(x 220  (13)

Substituting  = 1 � u, along with Eq. (13) into the
Eq. (9) and then setting the coefficients of constant term
and cos(2

2
t), the following nonlinear algebraic equations

are obtained
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After simplification, Eq. (14) takes the form
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By elimination of 2

2  from Eq. (15), the equation of
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u is obtained as

8

1
0  (17)

The power series solution of Eq. (17) is
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Substituting the value of u from Eq. (18) into the Eq.
(16) the second-order approximate angular frequency is
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Thus the second-order approximation solution of Eq.

(9) is )t3cos(u)tcos((a)t(x 220   where u and 
2

are respectively given by Eqs. (18) and (19).
It is observed that solution Eq. (13) measures better

result when Eqs. (14)-(15) is truncated as
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Seeing that Eq. (14)-(15), it is clear that the half of the
second order terms are considered. Now from the Eq.
(19) we can easily obtain
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Combining the Eq. (22) and Eq. (21) and then simpli-
fying we get
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The power series solution of Eq. (23) is
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Substituting the value of u from Eq. (24) into the Eq.
(22) the angular frequency in truncation form is
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In a similar way, the method can be used to deter-
mine higher order approximations. In this article, a third-
order approximate solution of Eq. (9) is
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Substituting Eq. (26) into the Eq. (9) and equating the
constant term and the coefficients of cos(2

3
t) and

cos(4
3
t) the following nonlinear algebraic equations are

found
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From the Eq. (27) we can easily written as

22

0

2

0

2

0

22

0

2

0

2

0

2

3 va13uvavaua5ua2/a

1


 (30)

Now using Eq. (30) into the Eq. (28)-(29) we get the
equation of u and v are
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The power series solutions of u and v from the Eqs.
(31)-(32) in terms of 

0
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Substituting the values of u and v from Eq. (34)-(35)
into Eq. (30), simplifying the third-order approximate
angular frequency is
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Therefore a third-order approximation periodic so-
lution of Eq. (9) is define as Eq. (26) where u, v and 

3
 are

respectively given by the Eqs. (34)-(36).
The third-order approximate solution Eq. (26) mea-

sures almost similar result when Eqs. (27)-(29) are trun-
cated as
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Seeing that Eqs. (37)-(39), it is clear that the higher
order terms of u and v (more than third) are ignored; but
half of the third order terms are considered.

From the Eq. (37) we can easily written as
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Now using the Eq. (40) into the Eq. (37)-(38) we get
the equation of u and v are
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Where 
0
 and 

0
 are defined as the Eq. (17) and Eq.

(32).
The algebraic relation between 

0
 and 

0
 is obtained

as Eq. (33).
The power series solutions of u and v from the Eqs.

(41)-(42) in terms of 
0
 are
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Substituting the values of u and v from Eq. (43)-(44)
into Eq. (40), simplifying the third-order approximate
angular frequency in truncation form is
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Therefore a third-order approximation periodic so-
lution of Eq. (8) is define as Eq. (26) where u, v and 

3
 are

respectively given by the Eqs. (43)-(45).

RESULTS AND DISCUSSIONS

We illustrate the accuracy of the simple analytical
method by comparing the approximate angular frequen-
cies previously obtained with the exact one. For this non-
linear problem, the exact angular frequency is[26]
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The approximate angular frequencies and their rela-
tives errors (RE) obtained in this paper by applying a simple
analytical technique to this nonlinear singular oscillator are
the following
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Where the percentage errors (RE) were calculated us-
ing the following equation
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Mickens, R. E.[26], approximately solved Eq. (8) using
Harmonic balance method (HBM). They achieved the
following results for the first and second-order approxi-
mate angular frequency are as follows
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Mickens, R., E.[27], approximately solved Eq. (8) using
an improved harmonic balance method that incorporates
the salient features of both Newton�s method and the
harmonic balance method. They calculated the following
results for the first and second-order approximate angu-
lar frequency in orders
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Comparing all the approximates results to their cor-
responding numerical values, we observe that the first-
order approximate angular frequency is same in all method
but the second-order approximate angular frequency ob-
tained in this paper by truncation principle is better than
those obtained in Mickens, R., E.[26,27]. Using truncation
principle it safe a lot of calculation compared with with-
out truncation principle. It has been mentioned that the
procedure of Mickens, R., E.[26,27], is laborious especially
for obtaining the higher approximations. The advantages
of this method include its simplicity and computational
efficiency, and the ability to objectively better agreement
in third-order approximate solution.

CONCLUSION

Based on a truncation principle of the related alge-
braic equations in HBM, a new analytical technique has
been presented to determine approximate periodic solu-
tions of nonlinear singular oscillator. In compared with
the previously published methods, determination of so-
lutions is straightforward and simple. And also we see
that the approximate angular frequency in second- ap-
proximate solution using the truncation principle the rela-
tive error is 1.1% whereas the article those obtained Mickens,
R., E.[26,27], are 1.6% and 2.7%. To sum up we can say that
the method presented in this article for solving nonlinear
singular oscillator can be considered as an efficient alter-
native of the previously proposed methods.
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