Determination of benzyl bromide as a genotoxic impurity in donepezil hydrochloride using extraction technique by gas chromatography

Ravikalgutkar¹, B.Sandhyakumari², K.Ramakrishna¹, V.Srinivasarao¹*
¹Department of Chemistry, Gitam Institute of Science, GITAM University, Visakhapatnam, (INDIA)
²Department of Chemistry, Acharya Nagarjuna University, Guntur, AP, (INDIA)
E-mail : drvsraoemail@gmail.com

ABSTRACT

A gas chromatographic method has been developed for the determination of Benzyl bromide in Donepezil hydrochloride drug substance. The method was optimised based on the basis of solubility of Benzyl bromide. The method was validated as per ICH guideline in terms of LOD, LOQ, Method precision, accuracy and specificity. The LOD and LOQ values were found to be 6.6 ppm (6.6 µg/mL) and 19.9 ppm (19.9 µg/mL) respectively.

© 2014 Trade Science Inc. - INDIA

INTRODUCTION

Donepezil hydrochloride is a new anti-Alzheimer drug. It is the potent acetylcholine esterase inhibitor. Chemically 2,3-Dihydro-5,6-dimethoxy-2-[(1-(phenylmethyl)-4-piperidinyl)methyl]-1H-inden-1-one hydrochloride. It has an empirical formula of C₂₄H₂₉NO₃HCl and molecular weight of 415.96. Donepezil hydrochloride was the first piperidine type reversible based inhibitor of the enzyme acetylcholinesterase. It has been approved for the symptomatic treatment of mild to moderate Alzheimer’s disease (22).

Various methods in the literatures involve determination of Donepezil in human plasma by HPLC²¹-²⁴, UV Spectrophotometry²⁵,²⁶. Donepezil in pharmaceutical dosage by HPLC²⁷-²⁹. However no method is available for content of benzyl bromide in Donepezil by Gas chromatography. In the present work we have developed a new, simple precise, accurate method for determination of benzyl bromide in Donepezil hydrochloride by gas chromatography in bulk drug. In synthesis of Donepezil hydrochloride involves benzyl bromide as a raw material which is an genotoxic alert. Hence evaluation of Benzyl bromide is necessary. Benzyl bromide is a pungent colourless liquid causes eye and skin irritation on exposure. It is classified as hazardous by definition of hazardous communication standard (29 CFR 1910.1200). Under the authority of the federal advisory committee act (FACA) the national advisory committee for acute exposure guideline levels for hazardous substance (NAC/AGEL committee) has been established to identify, review and interpret relevant toxicological and other scientific data (23).

EXPERIMENTAL

Chemicals

Benzy bromide was purchased from Aldrich chemicals; LC grade cyclohexane was purchased from rankem. Samples of donepezil hydrochloride are received from local market. Structure of donepezil hydrochloride and benzyl bromide are shown in Figure 1.
Sample preparation
Weighed about 200 mg of Donepezil hydrochloride drug substance and add 8 mL of purified water in a stoppered test tube dissolve the sample by gentle shaking and add 2 mL of Cyclohexane, stopper the test tube vortex for 3 min in cyclomixer. Separate the upper organic layer, inject the organic layer.

RESULTS AND DISCUSSION
Method development and optimization
Benzyl bromide is a liquid at ambient temperature with a boiling point of 198°C. Solvents used for development were Methylene chloride, Toluene and Cyclohexane. Cyclohexane is finalised as the diluents as Benzyl bromide shows good response compared to Methylene chloride and Toluene. Benzyl bromide is soluble in Cyclohexane and insoluble in water whereas Donepezil hydrochloride is soluble in water and insoluble in Cyclohexane. Hence Extraction method is employed so that Donepezil hydrochloride gets soluble in water

Standard preparation
Transfer 8 mL of purified water in a stoppered test tube and added 2 mL of standard stock solution stopper the test tube vortex for 3 min in cyclomixer. Separately rate the upper organic layer, inject the organic layer.
Figure 4: Typical chromatograms of (a) Blank (b) Standard (c) Sample (d) spiked sample
and content of Benzyl bromide gets extracted in Cyclohexane. The experiment was initially carried out on DB-1 column but was replaced by DB-5 column for sharper peak. The effect of injection volume and split was observed and optimised up to 5 µL with a split of 2:1 for sample concentration of 100mg/mL.

Method validation

The method validation work was conducted according to the ICH guidelines(20-21). The Validated method parameters include specificity, accuracy, sensitivity, precision, linearity, robustness, ruggedness and solution stability. LOD, LOQ values were obtained by preparing a series of known concentration solutions of increasing concentration and plotted a graph of concentration against area of analyte. LOD and LOQ values were found to be 6.6 ppm and 19.9 respectively for the sample concentration of 100 mg/mL. Linearity of the method was determined by preparing and analyzing a series of 7 standard solutions to cover the concentration range of LOQ to 132ppm for benzyl bromide. The linearity correlation coefficient was found to be 0.9987

The method is precise which is indicated by the low % relative standard deviation of six replicate standards, which was 2.130. The accuracy of method was determined by spiking the samples at 50 %, 100 % and 150 % level. Method also validated for solution stability at room temperature. Standard solution of benzyl bromide at concentration of 66ppm was injected at regular intervals up to 3days at room temperature. The recovery was in the range of 95-105% which confirms solution is stable.

CONCLUSIONS

A simple and sensitive GC method has been developed and validated for the trace analysis of benzyl bromide in pharmaceuticals. The validation has been conducted according to ICH guidelines. Compared with the previously reported methodologies, this method utilizes a FID detector, which is readily available in most of the testing laboratories in pharmaceutical industry and relatively simple to use. This method is sensitive enough to detect 6.6ppm and quantify 19.9ppm level of benzyl bromide in pharmaceutical drug substances.

ACKNOWLEDGEMENTS

The authors are grateful of M/S GITAM Institute of Science, GITAM University, visakhapatnam, India for providing research facilities.

REFERENCES

Full Paper

Determination of benzyl bromide as a genotoxic impurity in donepezil

ACAIJ, 14(9) 2014

An Indian Journal

Analytical CHEMISTRY


[23] Acute exposure guideline Levels (AEGLs) for piperidine. Casno. 110-89-4