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ABSTRACT 

In this paper, Proportional Integral (PI) Controllers are designed for unstable Multi Input Multi 
Output system with delay based on the equivalent transfer function (ETF) model. Decoupling method is 
proposed for multivariable processes. The simplified decoupler is used to eliminate the process 
interactions between the controlled and manipulated variables. PI controllers are designed for the diagonal 
elements of ETFs by synthesis method meant for unstable first order plus time delay (FOPTD) systems to 
give satisfactory performances. Since the unstable system has large overshoot. To reduce the overshoot, a 
double loop PI controller is designed. 

Key words: Two input two output control, Unstable system, PI controllers, Simplified decoupler, 
Robustness, Double loop control. 

INTRODUCTION 

Multi-loop proportional integral (PI) controllers, have been widely used for 
processes with small interactions because of their many practical advantages such as their 
simple control structure and fewer tuning parameters. Basically design of Multi input multi 
output (MIMO) controllers is more complex than single input single output (SISO) 
controllers because of the loop interactions. The MIMO process can be controlled by 
decoupled controllers. Unstable SISO systems are more difficult to control than that of the 
stable systems.  

Control of unstable systems is given by Padmasree and Chidambaram1. There are 
several methods to design the unstable SISO Proportional Integral controllers. Luyben et al.2 
have given the design of decentralized PI controllers for a stable MIMO system. A 
comparative study of some multivariable PI controller tuning methods for stable systems 
given by Tanttu et al.3 It requires the transfer function matrix. Only a few methods are 



Int. J. Chem. Sci.: 14(3), 2016 1599

available for unstable multivariable processes. Govindhakannan and Chidambaram4 have 
given the method of designing multivariable PI controllers for unstable system. Decoupling 
is used to reduce the control loop interactions. Ideal, simplified and inverted are the three 
types of decupling techniques. 

Ideal decoupling has the complicated decoupler elements. It is rarely used in practice, 
greatly facilitates the tuning of the controller transfer matrix. Simplified decoupling is by far 
the most popular method. Its main advantage is simplicity of its elements. Inverted 
decoupling, which is also rarely implemented. Ideal and inverted decoupling is sensitive to 
the modelling error. 

The decentralized controller works well when the interaction among the loop is not 
large. If there is more interaction it won’t give acceptable response. The decentralized PI 
controllers do not stabilize the system if the unstable pole is present in each of the transfer 
function. Centralized controller reduces the interaction better than the decentralized 
controller. Kumar et al.5 have given a synthesis method to centralized PI controller for 
interacting multivariable processes. Design of double loop PI controllers for the unstable 
systems based on the Tanttu and Lieslehto method was given by Govindhakannan and 
Chidambaram6. The concept of equivalent transfer function/effective open-loop transfer 
functions (ETFs/EOTFs) to design the multi-loop control system7,8. Recently Rajapandiyan 
and Chidambaram9 have given the simple decoupled equivalent transfer function method to 
Designing controller for MIMO processes. This method is extended to unstable 
multivariable system by Hazarika and Chidambaram10. However, assumption involved in 
this method is that decoupler should be stable. Simplified decoupler method gives the less 
interactions and better performances when compared to the ideal and inverted decoupling 
methods. 

Methodology 

Design based on ETF model 

Consider the 2 × 2 control problem shown in Fig. 1. Because to completely 
characterize the process dynamics, there are two controlled variables and two manipulated 
variables, four process transfer functions are necessary. 

(s)G(s)u
(s)y

p,11
1

1 =
       

(s)G
(s)u
(s)y

p,12
2

1 =
 

(s)G(s)u
(s)y

p,21
1

2 =       (s)G
(s)u
(s)y

p,22
2

2 =  …(1) 



 A. Ilakkiya et al.: Design of Pi Controllers for…. 1600 

 
Fig. 1: Block diagram for TITO system 

The transfer function in eq (1) can be used to determine the effect of a change in 
either u1 or u2 on y1 and y2. Simultaneous change in u1 and u2 have an additive effect on each 
controlled variable by the principle of superposition. 
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 )()()()()( 2221212 susGsusGsy pp +=  …(3)                

These input-output relations can also be expressed in vector-matrix notation as – 

 )()()( susGsy p=  …(4)                

Where y(s) and u(s) are vectors with two elements 
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Gp (s) is the process transfer function matrix, 
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The process transfer function models are expressed as FOPDT models 
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If the second feedback controller is the automatic mode, with 02 =ry , then the 
closed-loop transfer function between y1 and u1.  
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This can be written as – 
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Similarly for the second loop, 
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The complicated relation of eqs (9) and (10) can be simplified by assuming two 
assumptions: First, the perfect controller approximation for the other loop was used to 
simplify the eqs (9), (10) that is 
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Second, ETFs have the same structure of the corresponding open-loop model. By 
using the perfect controller approximation, eqs (9) and (10) can be approximated as follows: 
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Here, gp11
eff

 and gp22
eff are the effective open-loop transfer functions (EOTF). The 

formulation of EOTFs for the higher dimension systems is difficult. On the other, the 
derivation of ETFs is easy for higher dimension systems.  
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The basic steps required to obtain ETF for a TITO system are as follows:- 

To describe the dynamic properties of a transfer function, the normalized gain (kNij) 
for a particular transfer function, )(sgij is defined as – 
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Normalized gain matrix is expressed as – 
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Where Θ denotes Hadamard division, k is the steady state gain, and Tar = τij + θij is 
defined as the average residence time which signifies the response speed of the controlled 
variable yi to manipulated variable uj. 

 Hence, the RNGA (denoted as φ) can be obtained as – 
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Where ⊗ denotes Hadamard multiplication. Relative average residence time array 
(RARTA), which is defined as the ratio of loop yi – uj average residence times, when other 
loops are closed and when other loops are open, is given by 

 
⎥
⎦

⎤
⎢
⎣

⎡
==

2221

1211

γγ
γγ

ΛΘφΓ  …(18)                

Hence for an unstable system, the ETF can be expressed as – 
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It should be noted that the method is applicable when EOTF = ETF. 

Pairing criteria 

For multivariable controllers, paring is required. The problem of loop interaction can 
be minimized by a proper choice of input output pairings. If there is ‘n’ input and ‘n’ output 
in the control system, then n! ways of pairing the controlled and manipulated variables will 
be there. Some of these control configurations would be immediately rejected as being 
impractical and unworkable. Bristol’s relative gain array method. It is a systematic approach.  
Relative Gain Array is a measure of process interactions.  

 
⎥
⎦

⎤
⎢
⎣

⎡
=⊗=Λ −

2221

1211)(
λλ
λλTkkRGA  …(20) 

Where k is the steady state gain.  

Design of controller 

Fig. 2 constituting of input variable u, output variable y, process gain gp, decoupler 
element d and controller gain gc can be modelled as follows: 

 The relationship between the input and process output is given by – 

 )()()()( susdsgsy =  …(21)   

 
Fig. 2: TITO process with simplified decoupler (d11 = 1; d22 = 1) 
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The output of the TITO system with decoupler is – 
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Design of simplified decoupler, 
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Design of double loop control structure to reduce the overshoot 

Gp, process gain; Gd, decoupler element; Gc,I inner-loop diagonal proportional 
controllers; Gc,O outer-loop diagonal proportional integral controllers; y, output variable; yr 
set point values; v, load variable. 

 
Fig. 3: Block diagram for the double loop control scheme 

Design of inner loop diagonal P controller – 
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Design of outer loop diagonal PI controller – 
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Here kpii′ is the steady state value reached, θii′ is the initial value noted, and               
τii′ = t – θii′, where t is the time taken to (0.62 kpii′) from figure of proportional controller.  

Design of outer loop diagonal PI controller – 
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Based on these values diagonal PI controller matrix for the outer loop can be 
obtained.  

Synthesis method 

In direct synthesis (DS) method, the controller design is based on a process model. 
This method is used achieve the desired closed loop transfer function for MIMO processes 
with multiple time delays.  
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kc,ii kp,ii = 0.8668 ξii
–0.8288  for 0.1 ≤  ξii  ≤  0.7 
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Simulation example 

Let us consider the transfer function matrix and it is expressed as – 
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From the given transfer function matrix, steady state gain, 
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The ETF model matrix is given by 
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The simplified decoupler matrix is given by – 
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The diagonal elements of PI controller is obtained by synthesis method is given          
by –  
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Effective open-loop transfer function (EOTF) diagonal elements is obtained as 
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g11
eff, g22

eff are the diagonal elements of EOTF. The closed loop response of ETF is 
same as EOTF.                                                                                                             
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Fig. 4: Response of the PI controllers for controlled variables with interaction 
separately (y1, y2)  
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Fig. 5: Response of the PI controllers for manipulated variables with interaction 

separately (u1, u2) 

To reduce the overshoot dual loop control scheme is used. Here, the inner loop 
proportional controller tuning parameters are kc,11 = – 1.2028 and kc,22 = 3.0305. The fitted 
parameter are kp,11′ = 0.6195, τ11′ = 2.5, kp,22′ = 0.9999, τ22′ = 2.5 and θ11′ = θ22′ = 1. Which 
is calculated from the response of P controller with decoupler. For the stabilized FOPTD 
system, diagonal PI controllers by the synthesis method and placed in the outer loop. 
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Fig. 6: Response of proportional controllers with decoupler 

Hence the outer loop diagonal PI controller matrix is given by – 
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Fig. 7 shows that the response of the double-loop controller is much superior to that 
of a single loop PI controller. Fig. 8 shows the responses of single and double-loop controllers 
when the load variables v1 and v2 enter the system along with the inputs u1 and u2. 
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Fig. 7: Response of single-loop and double–loop two input two output PI controllers 

with decoupler for servo problems 
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Fig. 8: Response of single-loop and double–loop two input two output PI controllers 

with the decoupler for regulatory problems; (left) v1 = 0.2, v2 = 0;                                  
(right) v1 = 0, v2 = 0.2 

The robustness of the double-loop system is evaluated by disturbing each process 
gain, time delay (θ) and time constant (τ), ± 10% of the normal value in process. The 
robustness performance is shown in Fig. 9. Table 1 shows the IAE/ISE values for the above 
robustness studies for the servo and regulatory problems.  
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Fig. 9: Robustness of double-loop controllers for perturbation in each kp (10%) in the 

process: (top panels) servo problem; (bottom panels) regulatory problem 

Table 1: Comparison of IAE and ISE values for disturbance in the model parameters 
for the double-loop control system 

Perturbation 
Servo (y1) Servo (y2) Regulatory (y1) Regulatory (y2) 

IAE ISE IAE ISE IAE ISE IAE ISE 

kp 3.39 1.987 4.939 2.29 0.5676 0.0234 1.022 0.0548 

1.1 kp 3.273 1.89 4.831 2.195 0.5676 0.0276 1.022 0.0631 

0.9 kp 3.533 2.106 5.071 2.402 0.5677 0.0262 1.022 0.0542 

θ 3.39 1.987 4.939 2.29 0.5676 0.0234 1.022 0.0548 

Cont… 
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Perturbation 
Servo (y1) Servo (y2) Regulatory (y1) Regulatory (y2) 

IAE ISE IAE ISE IAE ISE IAE ISE 

1.1 θ 3.39 2.046 4.939 2.289 0.5637 0.0243 1.022 0.0552 

0.9 θ 3.39 1.935 4.939 2.294 0.5691 0.0231 1.022 0.0566 

τ 3.39 1.987 4.939 2.29 0.5676 0.0234 1.022 0.0548 

1.1 τ 3.39 2.061 4.939 2.353 0.5801 0.0234 1.022 0.0558 

0.9 τ 3.39 1.915 4.939 2.226 0.5746 0.0238 1.093 0.0581 

CONCLUSION 

Based on the equivalent transfer function (ETF) model, multivariable PI controllers 
are designed for unstable multivariable systems with time delay. The simplified decoupler 
reduces the loop interaction. The advantage of double-loop method is used to reduce the 
overshoots and eliminate the interactions.  
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