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Using the parameterization based on the quasi-classical atomic orbitals the
density of electron states for boron nitride in the wurtzite structure is
obtained. The upper valence, gap, and lower conduction bandwidths of w-
BN are estimated as 13.6eV, 5.4eV, and 11.6eV, respectively.
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INTRODUCTION

Boron nitride can be found in form of one-di-
mensional diatomic molecule BN; two-dimensional
fullerene and nanotubular surfaces with the same
chemical formula; three-dimensional layered hexago-
nal h-BN (with two-layer stacking sequence) and
rhombohedral r-BN (with three-layer stacking se-
quence), densely packed cubic zinc-blende c-BN and
wurtzite-like w-BN crystals. Besides, the multi-walled
tubes and multi-shelled cage molecules on the base
of BN, turbostratic and amorphous boron nitride
tilms may be prepared. Boron nitrides are the mate-
rials with a diversity of industrial applications.

Among them the wurzite-like modification also is
of special scientific and technological interest being
known for their supetior bonding properties™ that
are especially valuable in high-temperature applica-
tions. The hardness, high melting point, high ther-
mal conductivity, large bulk modulus, etc make w-
BN useful for protective coatings. It is chemically
inert and does not react with iron. As a result the
super-hard materials made from w-BN found appli-
cations in metal cutting operations. Furthermore, the
electronic properties of w-BN characterized by large
band gap and relatively low dielectric constant indi-
cate?! its device applications in short-wavelength
(green, blue, and ultraviolet) electro-luminescent
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optics and high-temperature microelectronics.

As the substances can be considered as an elec-
tron systems affected by the stationary field of nu-
clei fixed at the sites in a structure of atoms, their
physical and chemical properties are mainly deter-
mined by electron spectra, and for this reason it is
important to calculate them. Applying the theoreti-
cal method based on the quasi-classical approxima-
tion the electron energy spectra were obtained for
BN diatomic molecule?); isolated BN-layer!l| hex-
agonalPl, and cubic® boron nitride crystals. In the
present work in same way we calculate the density-
of-states (DOS) of wurtzite phase. The paper is or-
ganized as follows. At first the used theoretical
method is reviewed. Then results of the quasi-clas-
sical calculations are given. Finally they are discussed
in comparison with experimental and theoretical data
available for the w-BN electronic structure.

THEORETICAL BASIS

Success of quasi-classical approach to substance
is explained by the diffuseness of atomic potentials.
The expression for bounded electron states energies
obtained by Maslov®® yields that precise and quasi-
classical spectra are close to one another indepen-
dently from the potential smoothness properties if
the characteristic values of potential @ and the ra-
dius of its action R meet requirement ® R > >>1
(all relations are given in atomic units (au)). For
atomic potential ® ~Z/R and R ~ R where Z is
the atomic number, Z =2 1, and R is the radius of
electron cloud. Therefore, in case of atoms it must
be 2ZR >> 1. Even for light atoms R is several times
larger than Bohr radius, R >> 1. Thus, atoms and
polyatomic structures — molecules and crystals — are
quasi-classical electron systems in the sense speci-
fied. On this basis the quasi-classical approach to
calculation of crystalline electronic structures has
been developed (summatization see in"). Its essen-
tial content can be described as follows.

The values of /th electron classical turning points
radii 7' and 7" inside the constituent atom (r/ < ")
are obtained by solving the equations

E,=-®(0)+ [(I+1) /27 i=123,...Z,
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Where r denotes the distance from the center of
atom, P (7 is the potential affecting the given elec-
tron, £, < 0 and / are its energy and orbital quantum
number. At the ground state the inner classical turn-
ing point for relative motion of atomic nucleus and
electron cloud coincides with the center of system.
The outer classical turning point radius 7 is obtained

by solving the equation =7 (r), whete [ <() de-

notes the energy associated with relative motion, and

D(r) = —(ZZ /r— z:ZdJ,.(r))/(Z -1) is the electron
cloud potential affecting the nucleus. In particular,
using the quasi-classical parameterization based on
the Coulomb-like atomic potentials @ (= Z /r we
get exact formulas

1 =”i§”i _V”? —1;(1; +1) E/Zi R
r;'=n,.§n,.+,/nf —1,(1; +1) E/Z,-’

7 =2(Z-1)/ 2 (z2 - Zfz)z
F=-2l -y 2] faz-vy

Here Z, =n;4J2| E; | is the effective charge of

the screened nucleus for ith electron and 7 is its prin-
cipal quantum number.

The quasi-classical limit means the truncation
of electron states charge densities outside the clas-
sical turning points and space averaging within the
range between them. In this case /th electron partial
charge density is approximated by the piecewise-con-
stant radial function

pi(r)=0 r<r;
=-3/4n(s]’ -1’y riSr<if
=0 r<r,

Whereas the nucleus charge density is averaged
inside the7 -sphere:
pP(r)=3Z/4n7>
=0
Consequently, full atomic charge density is ex-
pressed by the step-like radial function

0<r<r

r<r

p(r)=P(r)+ S Py (1) = by
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f Sr<r, k=1,23,..,9q,

where 7, and P, denote known constants that de-
pend on parameters 77, 7' and 7, 0=7,< r,< r,<[EK
r<r =, q<2Zis the number of homogenous’
charge density radial layers in atom. Using the Pois-
son equation the radial dependence of the full atomic
potential also can be approximated by the step-like
function if substituted by the space-averaged values

inside 7, | < r < r,_intervals:

2_ .2 5_ 5
- b -
b(r)= 33k(;'k ;‘k—l) + 3 k(;'k ;‘k—l) +e, =9,
2(r —154) 5(rp — 1)
I, Sr<r, k=1,2,3,...,q

a, =3 AT, (1] — 1)/ 3= 4D, 1}, / 3
b, =-2mnp, /3

Ck = z _k+127TP, (r} —xl4)+27p, 1}

In the region r > r the both of charge density
and potential vanish 1dent1cally (p(H=0 and @(N=0).
Thus, finite parameter 7 is the quasi-classical atomic
radius.

Approximating the crystalline inner potential by
the superposition of quasi-classical step-like poten-
tials of constituent atoms and choosing the square
roots of their piecewise-constant partial electron den-
sities as basis set of wave functions the electronic

specttum E=F()(p denotes the electron quasi-
momentum) is determined by solving the secular

equation det(H-ES)=0 in which matrix elements of
overlapping integrals § and Hamiltonian H are cal-

H ) i00y1(P) = ES(iy iy (P) = E

culated using the 7/, 7", 7, r, and ¢k parameters for
constituent atoms (r, is the radius of / th ‘homog-
enous’ potential radial layer in the (7) th atom; ¢ o 1S
the potential value inside this layer; 7,7 is the dis-
placement between (k)th and (K) th atoms of the
unit cells, which are displaced from the central one

by the translational vectors7 and 7, respectively):

Vv (o .
ity (k)t) exp(ipF)

13 n3 13
ihyj 1’(1’);)(1”(1()1 _1’(k)1)

S(,),(k)1(P) 4"2\/( w3

Viirey it (Girye ) =V (i s Loy Tiaeye ) HV iy =1 ey 1= iy )~

Re H(i)j(k)l (P)—ERe S(i)j(k)l (P)

V()i iy L7 ) TV iy Koy iy )

(K)=N A=q(x,

o D=3 33 5 S
T (K)= =

¢(K)A Viiarey i By > Xy » L aeye =z )
n3 _
\/ (1i),

Vi jin (E ity » Tyt > Lacyi =1 ) =

5 exp(ipt)

3 3
1'('1'),' )(1'(k)1 - 1'('k)1 )

=V 1y Ty Twoa s Ty » Liye s Tryi—c ) +
V(1) Laey1-1> Tayr—1 iy > i)yt > Laye - ) F
V(1415 Ty 15 TaoyA=1> Finye > Koyt » Ty~ ) +
V(1) =15 Ly 1-1> Laoyd s iy > iy > Laeyi -5 ) ™
“V(£iyj-1> Ty Xy Lty > i)t > Ly - ) ~

=V 1y Laey1-15 To)n s Linye » Tyt » Layi =1 ) ~
=V (5> ey 15 FoA=1 Ly > Kyt > Faacyi =¢ )~

=V (1) j-15 Ty 1-1> LaoyA=1> Loyt » Xy > Liayi=t )

They are the linear combinations of two univer-
sal geometric functions. The first = 1"(R, R, D, )
expresses the dependence of two spheres’ intersec-
tion region volume upon their radii R, and K, and
inter-central distance D,,. It is a continuous piece-
wise analytical combination of algebraic functions.
Another universal geometric function I”= (R, R,
R, D, D, D,,) expressing the dependence of three
spheres’ intersection region volume upon their radii
R, R, R, and inter-central distances D, D, , D,,

a continuous piecewise analytical combmauon of
algebraic and inverse trigonometric functions®l.

Substituting the matrix elements by the 2 x 2 ma-
trixes,

Im H(i)j(k)](ﬁ) —EImS ik, (P) H

Im H(i)j(k)](i)) +EImS )4y, (P) Re H(i)j(k)l(i’) —ERe 5(i),'(k)1(13)

the secular equation with » x #» complex matrix H -
ES (n is the number of electron bands in model of
crystal under the consideration) is transformed into
the secular equation with 27 x 27 real matrix ] — £
As the Hamiltonian is a complex Hermitian nega-
tive definite matrix, whereas the overlap integrals
matrix is a real symmetric positive definite, it is pos-

sible to rearrange the transformed secular equation
in the standard form det(h-£0)=0. Here, the reduced

Hamiltonian ) = s~"Hg3' is a real symmetric positive

defined matrix,
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_ [~ k=il _5 . _
O, =+S;— Zk=l g3 1=123,.,2n

_ 3 _ k=i - .
o; =(S; ‘=1 Uika,-k)/aii j=123,..,i-1;

0 is the identity matrix; and € is the absolute value
of electron energy. This secular equation reduced to
set of (21)* quadtic equations

k=2 . . —
zk=1n ViV Ysgn(@ = j)vpvy)—b; =0
i,j=1,2,3,....2n

- k=2n
bii T k=1

k=i-1 2
bii_zkzl 1y

Ll

i=1,23,..2n

i

_ k= ) )
1; = (hy _Zk=l Ii"ljk)/lii J=1,2,3,...,1-1,

which in the initial quasi-classical approximation
admits a solution by means of convergent iteration
processPl. Using the obtained matrix elements V, the
roots of the secular equation € — electron states ion-
ization potentials (for the fixed quasi-momentum
vector) — are calculated as

i=1,23,..2n

In case of model inner potential (in form of ana-
lytical solution of Thomas—Fermi equation) the
quasi-classically determined energetic parameters of
system are shown to differ from their exact values
by the multiplier of (311/10)*°=0.96. So, the expected
errors of the quasi-classical approach make up a few

—===> Full Paper

percent what is quite acceptable for the materials
science purposes. And what is more, as the quasi-
classical atomic radii are the finite parameters the
quasi-classical matrix elements in secular equation
for crystalline electronic structure contain a finite
number of nonzero summands, which can be calcu-
lated analytically using the universal geometric func-
tions. Thus, the quasi-classical approach is free from
ambiguous errors arisen from series termination.

RESULTS

Applying the stated relations we have calculated

the numerical values of Z, /7", 7, r, and @, by

72

fitting quasi-classical energy levels E to the Hartree—
Fock ones!. The requested quasi-classical param-
eters of the constituent atoms B and N are listed in
TABLES 1 and 2.

The lattice constant value of #=2.537 A used in
present calculation was previously found™! by mini-
mization of the quasi-classically calculated w-BN
crystal total energy fixing the ratio of lattice con-
stants « and ¢, and internal parameter # at the ‘ideal
values (a/¢)*= # =3/8. The accuracy of this lattice
constant is remarkable: its deviation from the ex-
perimental one is only ~0.6%. This fact allows us to
conclude that quasi-classical method would be also
preferable for estimations of energy differences char-
acterizing wurtzite-like boron nitride electronic struc-

TABLE 1: Electrons and nucleus-electron cloud relative motion classical turning points radii in atoms B

and N (in au)

Atoms B N

0 or I’l.' 7 or l”l." 0 or I’l.’ 7 or I’l."
States
Nucleus — Electron Cloud 0 0.027585 0 0.009446
1s 0 0.509802 0 0.357724
2s 0 4.021346 0 2.909074
2p 0.744122 4.337060 0.549803 3.204489

TABLE 2: Quasi-classical parameters of the potential distributions in atoms B and N (in au)

Atoms B N
k Ik (/)8 Ik (/)8
1 0.027585 210.5468 0.009446 878.4581
2 0.509802 8.882329 0.357724 20.22523
3 0.744122 3.652920 0.549803 8.464698
4 4.021346 0.206072 2.909074 0.509668
5 4.337060 0.000614 3.204489 0.003993
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DOS, arbitrary units
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Figure 1: Quasi-classically calculated density of

electron states for the upper valence and lower
conduction bands of w-BN crystal

ture.

The full basis set consisting of the occupied and
empty valence orbitals of unit cell constituent at-
oms (B1, N1, B2, N2: 25, 2p) is employed and the
crystalline potential is represented by a sum of atom-
centered step-like functions. On the ground of above
described quasi-classical approach the solutions for
the relevant secular equation have been obtained.
Calculated DOS for w-BN upper valence and lower
conduction bands with respect to Fermi level is
shown in the figure 1. It reveals that w-BN is an
insulator with band gap of E_=5.4¢V.

DISCUSSION AND CONCLUSIONS

Boron and nitrogen atoms are tetrahedrally sur-
rounded in both of densely packed forms of boron
nitride and in ‘ideal case’, that mimics the real one,
the w-BN structure differs from the c-BN structure
only in the stacking sequence of the B and N atoms.
Correspondingly, the nearest-neighbor atomic envi-
ronments and bonding types in both crystals are suf-
ficiently close and it has been taken for granted that
their electronic structures are also similar. However,
the lower symmetry and small deviations of bond
lengths in the w-BN structure can result in some

TABLE 3: w-BN bandwidths theoretical values (in
eV)

Upper Band Lower
valence conduction Method Reference
band 5P band
11.0 4.9 ~11.5¢ FLAPW [20]
~11.5° 5.81 > 8.0° OLCAO [21]
11.76 5.81 ~11.0° OLCAO [22]
— 5.45 — ILMTO [23]
13.6 54 11.6 QC this work

* estimations made from the given DOS-curves

unique features of its electronic properties. It urges
on analysis of w-BN in comparison with c-BN.

Indeed there are found™"! substantial differences
in the B and N X-ray spectra of w-BN and h-BN,
and to a lesser extent between w-BN and c-BN. Ac-
cording to these early experiments the band gap for
wurtzite-type boron nitride equals to B =2.1eV
which confirms that w-BN is an insulator™, But, it
seems that this value underestimates the real one
indicating low-quality crystals. The valence electrons
X-ray emission spectra obtained for h-BN, c-BN, w-
BN crystals, and the product of plasma-chemical
synthesis including all of boron nitride phases also
reveal the similarity of w-BN and c-BN electronic
structures™. The electronic excitation spectra for the
three boron nitride modifications under applied pres-
sure and lattice stretching up to stresses ~0.01Mbar
show same fundamental gap ordering that found at
equilibrium™. Slight differences between the K-
emission spectra of boron nitride denser modifica-
tions may be recognized by the analysis based on
X, -method™ or calculations within the local coher-
ent potential approximation(LCPA)!'1. The last al-
lows obtaining the fine structure in the region of top
of valence bands in the corresponding crystals and
shows that fine structure for w-BN is in a less de-
gree pronounced.

Park et al® were the first to calculate electronic
structure for w-BN. By means of full potential lin-
ear augmented plane wave (FLAPW) method they
found that like the boron nitride another crystalline
modifications w-BN is an insulator with the indirect
gap produced by the valence band maximum at [
point and the conduction band minimum at K point.
Xu and Ching®"* presented the DOS of w-BN in
comparison with other boron nitrides and some
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wurtzite-like crystals using orthogonalized linear com-
bination of atomic orbitals (OLCAO) method in the
local-density approximation (LDA). Linear muffin tin
orbital (LMTO) band structure calculations were ap-
plied by Christensen and Gorczya®! to investigate
optical properties of the boron nitride in the wurtzite
structure under hydrostatic pressure. All of DOS-
curves calculated for w-BN, including the quasi-clas-
sically (QC) found one, in outline are similar. But,
main peaks positions agree only qualitatively. The
w-BN electron bandwidths theoretical values are
compiled in TABLE 3. They show the identical
trend, with a narrow spread.

The obtained quasi-classical DOS-curve and its
parameters (upper valence and lower conduction
bandwidths, and gap between them) would be use-
ful for investigations of wurtzite-like boron nitride
electronic properties.
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