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Using the parameterization based on the quasi-classical atomic orbitals the
density of electron states for boron nitride in the wurtzite structure is
obtained. The upper valence, gap, and lower conduction bandwidths of  w-
BN are estimated as 13.6eV, 5.4eV, and 11.6eV, respectively.
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INTRODUCTION

Boron nitride can be found in form of  one-di-
mensional diatomic molecule BN; two-dimensional
fullerene and nanotubular surfaces with the same
chemical formula; three-dimensional layered hexago-
nal h-BN (with two-layer stacking sequence) and
rhombohedral r-BN (with three-layer stacking se-
quence), densely packed cubic zinc-blende c-BN and
wurtzite-like w-BN crystals. Besides, the multi-walled
tubes and multi-shelled cage molecules on the base
of  BN, turbostratic and amorphous boron nitride
films may be prepared. Boron nitrides are the mate-
rials with a diversity of  industrial applications.

Among them the wurzite-like modification also is
of special scientific and technological interest being
known for their superior bonding properties[1] that
are especially valuable in high-temperature applica-
tions. The hardness, high melting point, high ther-
mal conductivity, large bulk modulus, etc make w-
BN useful for protective coatings. It is chemically
inert and does not react with iron. As a result the
super-hard materials made from w-BN found appli-
cations in metal cutting operations. Furthermore, the
electronic properties of w-BN characterized by large
band gap and relatively low dielectric constant indi-
cate[2] its device applications in short-wavelength
(green, blue, and ultraviolet) electro-luminescent
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optics and high-temperature microelectronics.
As the substances can be considered as an elec-

tron systems affected by the stationary field of nu-
clei fixed at the sites in a structure of  atoms, their
physical and chemical properties are mainly deter-
mined by electron spectra, and for this reason it is
important to calculate them. Applying the theoreti-
cal method based on the quasi-classical approxima-
tion the electron energy spectra were obtained for
BN diatomic molecule[3], isolated BN-layer[4], hex-
agonal[3], and cubic[5] boron nitride crystals. In the
present work in same way we calculate the density-
of-states (DOS) of wurtzite phase. The paper is or-
ganized as follows. At first the used theoretical
method is reviewed. Then results of the quasi-clas-
sical calculations are given. Finally they are discussed
in comparison with experimental and theoretical data
available for the w-BN electronic structure.

THEORETICAL BASIS

Success of quasi-classical approach to substance
is explained by the diffuseness of  atomic potentials.
The expression for bounded electron states energies
obtained by Maslov[6] yields that precise and quasi-
classical spectra are close to one another indepen-
dently from the potential smoothness properties if
the characteristic values of potential Φ0 and the ra-
dius of its action R0 meet requirement Φ0R0

2 >>1
(all relations are given in atomic units (au)). For
atomic potential  Φ0~Z/R and R0 ~ R where Z is
the atomic number, Z ≥ 1, and R is the radius of
electron cloud. Therefore, in case of atoms it must
be 2ZR >> 1. Even for light atoms R is several times
larger than Bohr radius, R >> 1. Thus, atoms and
polyatomic structures – molecules and crystals – are
quasi-classical electron systems in the sense speci-
fied. On this basis the quasi-classical approach to
calculation of  crystalline electronic structures has
been developed (summarization see in[7]). Its essen-
tial content can be described as follows.

The values of ith electron classical turning points
radii ri′ and ri″ inside the constituent atom (ri′ < ri″)
are obtained by solving the equations

Ei = -ΦΦΦΦΦi(r)+ li(li+1)/2r2 i = 1,2,3,...,Z,

Where r denotes the distance from the center of
atom, Φi(r) is the potential affecting the given elec-
tron, Ei < 0 and li are its energy and orbital quantum
number. At the ground state the inner classical turn-
ing point for relative motion of atomic nucleus and
electron cloud coincides with the center of system.
The outer classical turning point radius r~  is obtained
by solving the equation (r)ΦZE ~~ = , where 0<E~  de-
notes the energy associated with relative motion, and
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1
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=

ZrrZr Zi
i i  is the electron

cloud potential affecting the nucleus. In particular,
using the quasi-classical parameterization based on
the Coulomb-like atomic potentials Φi(r)= Zi /r  we
get exact formulas
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Here |E|nZ iii 2= is the effective charge of
the screened nucleus for ith electron and ni is its prin-
cipal quantum number.

The quasi-classical limit means the truncation
of electron states charge densities outside the clas-
sical turning points and space averaging within the
range between them. In this case ith electron partial
charge density is approximated by the piecewise-con-
stant radial function

0)( =riρ irr ′<

         )(4/3 33
ii rr ′−′′−= π ii rrr ′′≤≤′

        0= rri <′′ ,
Whereas the nucleus charge density is averaged

inside the r~-sphere:
3~4/3)(~ rZr πρ = rr ~0 ≤≤

       0= rr <~

Consequently, full atomic charge density is ex-
pressed by the step-like radial function

k
Zi

i i rrr ρρρρ =+= ∑ =
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kk rrr <≤−1 qk ,...,3,2,1= ,
where rk and ρk denote known constants that de-

pend on parameters ri′, ri″ and r~ , 0≡r0< r1< r2<⋅⋅⋅<
rq< rq+1≡ ∞, q ≤ 2Z is the number of ‘homogenous’
charge density radial layers in atom. Using the Pois-
son equation the radial dependence of the full atomic
potential also can be approximated by the step-like
function if substituted by the space-averaged values
inside rk-1 ≤ r < rk intervals:
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In the region r > rq the both of charge density
and potential vanish identically (ρ(r)≡0 and ϕ(r)≡0).
Thus, finite parameter rq is the quasi-classical atomic
radius.

Approximating the crystalline inner potential by
the superposition of quasi-classical step-like poten-
tials of constituent atoms and choosing the square
roots of their piecewise-constant partial electron den-
sities as basis set of wave functions the electronic
spectrum )pE(E

r
= ( p

r
 denotes the electron quasi-

momentum) is determined by solving the secular
equation det(H-ES)=0 in which matrix elements of
overlapping integrals S and Hamiltonian H are cal-
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They are the linear combinations of two univer-
sal geometric functions. The first V = V(R1, R2, D12)
expresses the dependence of two spheres’ intersec-
tion region volume upon their radii R1 and R2 and
inter-central distance D12. It is a continuous piece-
wise analytical combination of  algebraic functions.
Another universal geometric function V = V(R1, R2,
R3, D12, D13, D23,) expressing the dependence of three
spheres’ intersection region volume upon their radii
R1, R2, R3, and inter-central distances D12, D13, D23 is
a continuous piecewise analytical combination of
algebraic and inverse trigonometric functions[8].

Substituting the matrix elements by the 2 x 2 ma-
trixes,

culated using the ri′, ri″, r~, rk and ϕk parameters for
constituent atoms (r(i)j is the radius of j th ‘homog-
enous’ potential radial layer in the (i) th atom; ϕ(i)j  is
the potential value inside this layer; τtkκ)(r rr

−  is the dis-
placement between (k)th and (K) th atoms of the
unit cells, which are displaced from the central one
by the translational vectors t

r  and τr, respectively):
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the secular equation with n x n complex matrix H -
ES (n is the number of electron bands in model of
crystal under the consideration) is transformed into
the secular equation with 2n x 2n real matrix SEH ~~ − .
As the Hamiltonian is a complex Hermitian nega-
tive definite matrix, whereas the overlap integrals
matrix is a real symmetric positive definite, it is pos-
sible to rearrange the transformed secular equation
in the standard form det(h-εδ )=0. Here, the reduced
Hamiltonian 11

TσHσh −−=
~ is a real symmetric positive

defined matrix,
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δ is the identity matrix; and ε is the absolute value
of  electron energy. This secular equation reduced to
set of (2n)2 quadric equations
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which in the initial quasi-classical approximation
admits a solution by means of convergent iteration
process[9]. Using the obtained matrix elements νij the
roots of the secular equation εi – electron states ion-
ization potentials (for the fixed quasi-momentum
vector) – are calculated as

∑ =
== nk

k iki v2
1

2ε ni 2,...,3,2,1=

In case of  model inner potential (in form of  ana-
lytical solution of  Thomas–Fermi equation) the
quasi-classically determined energetic parameters of
system are shown to differ from their exact values
by the multiplier of  (3π/10)2/3≈0.96. So, the expected
errors of the quasi-classical approach make up a few

TABLE 1: Electrons and nucleus-electron cloud relative motion classical turning points radii in atoms B
and N (in au)

percent what is quite acceptable for the materials
science purposes. And what is more, as the quasi-
classical atomic radii are the finite parameters the
quasi-classical matrix elements in secular equation
for crystalline electronic structure contain a finite
number of nonzero summands, which can be calcu-
lated analytically using the universal geometric func-
tions. Thus, the quasi-classical approach is free from
ambiguous errors arisen from series termination.

RESULTS

Applying the stated relations we have calculated
the numerical values of Zi, ri′,ri″ , r~, rk and ϕk by
fitting quasi-classical energy levels Ei to the Hartree–
Fock ones[10]. The requested quasi-classical param-
eters of the constituent atoms B and N are listed in
TABLES 1 and 2.

The lattice constant value of a=2.537 Å used in
present calculation was previously found[11] by mini-
mization of the quasi-classically calculated w-BN
crystal total energy fixing the ratio of  lattice con-
stants a and c, and internal parameter u at the ‘ideal
values’: (a/c)2 = u =3/8. The accuracy of this lattice
constant is remarkable: its deviation from the ex-
perimental one is only ~0.6%. This fact allows us to
conclude that quasi-classical method would be also
preferable for estimations of  energy differences char-
acterizing wurtzite-like boron nitride electronic struc-

B� N�Atoms 
 
States�

0 or ir′ � r~  or ir ′′ �

0 or ir′ � r~  or ir ′′ �
Nucleus – Electron Cloud 
1s 
2s 
2p�

0 
0 
0 
0.744122�

0.027585 
0.509802 
4.021346 
4.337060�

0 
0 
0 
0.549803�

0.009446 
0.357724 
2.909074 
3.204489 

TABLE 2: Quasi-classical parameters of the potential distributions in atoms B and N (in au)

B� N�

Atoms 
 

k� rk� ϕk
�

rk� ϕk�

1 
2 
3 
4 
5�

0.027585 
0.509802 
0.744122 
4.021346 
4.337060�

210.5468 
8.882329 
3.652920 
0.206072 
0.000614�

0.009446 
0.357724 
0.549803 
2.909074 
3.204489�

878.4581 
20.22523 
8.464698 
0.509668 
0.003993 
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ture.
The full basis set consisting of the occupied and

empty valence orbitals of unit cell constituent at-
oms (B1, N1, B2, N2: 2s, 2p) is employed and the
crystalline potential is represented by a sum of atom-
centered step-like functions. On the ground of  above
described quasi-classical approach the solutions for
the relevant secular equation have been obtained.
Calculated DOS for w-BN upper valence and lower
conduction bands with respect to Fermi level is
shown in the figure 1. It reveals that w-BN is an
insulator with band gap of  Eg =5.4eV.

DISCUSSION AND CONCLUSIONS

Boron and nitrogen atoms are tetrahedrally sur-
rounded in both of  densely packed forms of  boron
nitride and in ‘ideal case’, that mimics the real one,
the w-BN structure differs from the c-BN structure
only in the stacking sequence of  the B and N atoms.
Correspondingly, the nearest-neighbor atomic envi-
ronments and bonding types in both crystals are suf-
ficiently close and it has been taken for granted that
their electronic structures are also similar. However,
the lower symmetry and small deviations of bond
lengths in the w-BN structure can result in some

unique features of  its electronic properties. It urges
on analysis of  w-BN in comparison with c-BN.

Indeed there are found[12,13] substantial differences
in the B and N X-ray spectra of  w-BN and h-BN,
and to a lesser extent between w-BN and c-BN. Ac-
cording to these early experiments the band gap for
wurtzite-type boron nitride equals to Eg =2.1eV
which confirms that w-BN is an insulator[14]. But, it
seems that this value underestimates the real one
indicating low-quality crystals. The valence electrons
X-ray emission spectra obtained for h-BN, c-BN, w-
BN crystals, and the product of plasma-chemical
synthesis including all of boron nitride phases also
reveal the similarity of w-BN and c-BN electronic
structures[15]. The electronic excitation spectra for the
three boron nitride modifications under applied pres-
sure and lattice stretching up to stresses ~0.01Mbar
show same fundamental gap ordering that found at
equilibrium[16]. Slight differences between the K-
emission spectra of boron nitride denser modifica-
tions may be recognized by the analysis based on
Xα-method[17] or calculations within the local coher-
ent potential approximation(LCPA)[18,19]. The last al-
lows obtaining the fine structure in the region of  top
of valence bands in the corresponding crystals and
shows that fine structure for w-BN is in a less de-
gree pronounced.

Park et al[20] were the first to calculate electronic
structure for w-BN. By means of  full potential lin-
ear augmented plane wave (FLAPW) method they
found that like the boron nitride another crystalline
modifications w-BN is an insulator with the indirect
gap produced by the valence band maximum at Γ
point and the conduction band minimum at K point.
Xu and Ching[21,22] presented the DOS of w-BN in
comparison with other boron nitrides and some

TABLE 3: w-BN bandwidths theoretical values (in
eV)

Upper 
valence 
band�

Band 
gap�

Lower 
conduction 

band�
Method� Reference�

11.0 
~11.5 a 

11.76 
– 

13.6�

4.9 
5.81 
5.81 
5.45 
5.4�

~11.5 a 

>  8.0 a 
~11.0 a 

– 
11.6�

FLAPW 
OLCAO 
OLCAO 
LMTO 

QC�

[20] 

[21] 

[22] 

[23] 

this work 
a estimations made from the given DOS-curves
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Figure 1: Quasi-classically calculated density of
electron states for the upper valence and lower
conduction bands of  w-BN crystal
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wurtzite-like crystals using orthogonalized linear com-
bination of  atomic orbitals (OLCAO) method in the
local-density approximation (LDA). Linear muffin tin
orbital (LMTO) band structure calculations were ap-
plied by Christensen and Gorczya[23] to investigate
optical properties of the boron nitride in the wurtzite
structure under hydrostatic pressure. All of  DOS-
curves calculated for w-BN, including the quasi-clas-
sically (QC) found one, in outline are similar. But,
main peaks positions agree only qualitatively. The
w-BN electron bandwidths theoretical values are
compiled in TABLE 3. They show the identical
trend, with a narrow spread.

The obtained quasi-classical DOS-curve and its
parameters (upper valence and lower conduction
bandwidths, and gap between them) would be use-
ful for investigations of wurtzite-like boron nitride
electronic properties.
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