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Introduction  

From theory and experiments, there are several arguments to believe that the SM is just the low energy limit of a more 

fundamental theory. This is not necessarily true because the SM has been successfully tested at an impressive level of 

accuracy and provides at present our best fundamental understanding of the phenomenology of particle physics. During the 

20th century, physicists made tremendous progress in observing smaller and smaller objects and today’s accelerators allow us 

to study matter on length scales as short as 10 m to 18 m [1]. 

 

The basic questions of particle physics are:  

1. What is the world made of?  

2. What is the smallest indivisible building block of matter?  

3. Is there such a thing?  

Abstract 

On one hand, we investigated the decay rates of   meson decays from the basic computations of the Feynman 

diagrams. Under this approach, we derived analytically expressions for the square amplitudes of leptonic and 

semileptonic decays and finally used them to determine the analytical and numerical results for the decay rates.  With 

decay rates results at our disposal, we determined the branching ratios of leptonic and semileptonic decays separately 

within the standard model (SM) compared our results to the latest theoretical and experimental results.    

On the other hand, we focused on the effective Lagrangian (EL) under weak interaction from a general approach and 

used it in our calculation of differential decay rates of   mesons. Thereafter, we calculated the total decay rates via 

integration with respect to. In addition, using the total decay rates results, the branching ratios and the contributions 

from the new physics (NP) operators were investigated resulting in some phenomenologies of physics beyond the SM. 
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A major goal of physics is to find a common ground that would give an integrated approach and understanding on how to 

solve these questions surrounding nature [2]. 

Despite the high level of consistence and accuracy within the SM, it does leave some phenomena unexplained and it falls 

short of being a complete theory of fundamental interactions [3].  Therefore, the answer to these challenges lie in probing 

more of physics beyond the SM [4]. 

D Meson Decays  

D  mesons contain quarks and are one of the lightest particles in this family [5]. 

Leptonic Decays lD l v
 

The purely leptonic charged D  meson decays are the easiest to analyze among its decays. The factorization of its hadronic 

dynamics is given by  

 

   50 1
D D

d c D p if p    

    .                                                                                                                         (1) 

 

FIG. 1 shows the process of a 
D  meson decaying into a lepton and a neutron pair. Starting with the computation of the 

amplitude from the Feynman diagram, we arrive at the structure of the decay width to lowest order as 
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                                                                                                      (2)                                                         

 

 

 

FIG. 1. The Feynman diagram for purely leptonic 
D  decays in the Standard Model. 

 

From equation (2) the Fermi constant is given by FG , the D
 meson mass by 

D
m  , and the lepton mass by 

lm . cdV  is the 

CKM matrix element and 
D

f    is the decay constant.  
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Analyzing equation (1), it is evident that there are no leftover variables in our decay rate calculation under the leptonic decay 

in question. Thus, the branching ratio is determined straight forwardly without any integration by multiplying the decay rate 

to the mean life, 
D

   

Semileptonic Decays  

Due to the fact that leptons do not involve strong interaction, the lepton pair is free from the strong binding effects in the 

semileptonic decays. Consequently, we can factor them out and arrive at 

 

    DcqXlvV
G

A cq
F

55 11
2

 
  

                                                                                  (3)   

                                       

In the above expression,   DcqX 51     include all strong interactions. Leptonic and semileptonic D  meson decays 

are ideal laboratories to study non-perturbative QCD, and to determine important quark mixing parameters. In addition, they 

may provide additional constraints on physics beyond the SM. 

lvPlD 
 
Decay: Within the Standard Model, the D  meson semileptonic decay amplitude is given by [6]  

  

  †

2

F
l cq

G
M D Pl v i V L H



                                                                                                    (4) 

 

with 
L  being the leptonic current and H the hadronic current describing weak and strong dynamics of the interaction, 

respectively. Here the leptonic current is defined as  

 

  
  vuL l 51                                                                                                                               (5) 

 

Where lu   and vv  are the lepton and neutrino Dirac spinors, respectively. On the other hand, the hadronic current can be 

written as 

 

  DcqPH 51                                                                                                                         (6)     

                                      
               

It is vivid that D semileptonic decays involve the non-perturbative effects of quantum chromodynamics (QCD). As a result, 

this matrix element cannot be solved analytically. However, it can be parameterized by expanding the current in terms of all 

possible independent 4-vectors that can describe the decay, with each of these multiplied by a Lorentz-invariant form factor. 

In our case, there are only two independent 4 -vectors, which can be taken to be 21 pp   and 21 pp  . Moreover, there is 
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only one Lorentz invariant quantity, which is traditionally taken to be the invariant mass squared of the virtual W  boson, 

 221

2 ppq    

 

Thus, H  can take a decomposed in the form  

 

         2

21

2

2151 qfppqfppDcqP  
                                                                   (7) 

 

with 1p  and 2p  being the initial D  momenta and and pseudoscalar meson in the final state, respectively. From above, the 

form factors are given by 21 ppq  , and  2qf  and  2qf . We can also express the decomposition in the form 

 

     2

02

22
2

2

22

2151 qfq
q

mm
qfq

q

mm
ppDcqP PDPD  










 
 

                                   (8) 

 

with  2

0 qf  being the scalar and  2qf  the vector form factors, respectively. 

Here we note that 
2

1p  and 
2

2p  are not variables since the initial and final particles are on-the-mass-shell; 
22

1 Dmp  , 

22

2 Pmp  . The form factors depend only on 21.pp , and hence for we can write an equivalently relation as  

 

2

221

2

1

2 .2 ppppq  .                                                                                                                                                 (9) 
  

                                 

 
With an electron in the final state, its mass is much less with respect to parent D , therefore, only  2qf  

contributes. As a 

result, taking the limit 0lm  is an excellent approximation, and the current is further simplified to 

 

   2

21 qfppH 
                                                                                                                                              (10) 

                                              

Using these expressions for the hadronic and leptonic currents, we arrive at the partial decay width: 

 

   
2

23

3

2
2

2 24
qfp

VG
X

dq

PevDd cqFe





                                                                                                           (11) 

                                      

with p
 
and X  being the hadronic momentum and multiplicative factor, respectively. By neglecting lepton masses and 

plugging in all the necessary parameters we arrive at  
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      
2

22322222
2

33

2

2
4

192
qfmmqmmV

m

G
vPlD

dq

d
PDPDcq

D

F
l 

 



                                                      (12) 

                  

with only  2qf  contributing.  2qf  contributions are neglected due to its proportionality relation with 
2

lm . Here 

 220 PD mmq   gives the 
2q  distribution range. 

Experimental studies measure 
2dqd  integrated over several 

2q  bins in each semileptonic mode. In order to compare 

these with theoretical predictions, which provide estimates of  2qf  at one or several points in 
2q , it is convenient to fit 

the results using parameterizations of  2qf . Theoretically, a number of parameterizations of  2qf  have been 

suggested. The most theoretically motivated one is known as the "series" parameterization [7] and follows from a dispersion 

relation: 

  

   
 

 

















2 2

2

2

2 Im1

1

1
0

PD mm

D

iqt

tf
dt

m

q
fqf




                                                                                             (13) 

 

with 
Dm  and Pm

 
being the parent and daughter masses, respectively, and   is related to the relative meson contribution to

 0f . 

Here we are not going to dwell much on this one but on another parameterization called ‘simple pole’ model which suggests 

that the dispersion relation given in Eq. (13) is described by 

 

   

2

2

2

1

0

polem

q

f
qf



 


.                                                                                                                                                        (14) 

 

While this model can provide reasonable fits when both polem  and  2qf  are allowed to float, experimental fits of polem  

are far away from the expected value of
 

sD

M , indicating the higher-order poles are not negligible [8]. 

The semileptonic decay branching ratio is determined by integration with respect to 
2q  as

 
   

20

2
2

dq

PeDd
dqvPlDBr e

mm

Dl

PD 





 
                                                                                                (15) 

with D  being the mean life of the D  meson. 

lvVlD 
 
Decay: For the transitions to vector mesons, the structure of the hadronic matrix element of the process 
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lvVlD 
 
(FIG. 2), according to its Lorentz structure, is given by 

 

FIG. 2. Feynman diagram of semileptonic D  meson decay. 
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mm

qA
qq
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ppi V
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


 









 
                                                                     (16) 

 

where form factors  2qV  originate from cq  , and   2

2,1,0 qA  from cq 5  , respectively.  

By decomposing equation (16) we obtain the differential and total decay rate for lvVlD   decay. Here we note that there 

are three polarization states namely: longitudinal and two transverse polarization states. The longitudinal polarization state 

differential decay rate is given by 

 

       2

1

222222

33

2

2 2

1
,,

192
qAmmqmm

m
qmm

m

G

dq

d
VDVD

V

VD

D

FL 





 

 

   
2

2

2

222 ,,
qA

mm

qmm

VD

VD





                                                                                                                                                (17) 

 

Where 

 

    222222222 4,, VDVDVD mmqmmqmm  .                                                                                                                  (18) 

 



www.tsijournals.com | April-2017 

7 
 

 
 
 

On the other hand, we obtain the differential decay rate with respect to transverse state as, 

        
 

2

222

2

1

2
232222

33

22

2
,,

,,
192 qmm

qAmm

mm

qV
qmmq

m

VcqG

dq

d

VD

VD

VD

VD

D

FT













  ,                                                                   (19) 

 

with the symbols "   "and " " denoting the right-handed and left-handed states, respectively. We can therefore deduce from 

above that the combined transverse decay rate takes the form; 

 

  


TT
T

dq

d

dq

d
22

 .                                                                                                                                                        (20) 

 

Finally, the total differential decay rate becomes 

  

 TL
q

d

dq

d



22

                                                                                                                                                           (21) 

 

Where 
L  and 

T  are the longitudinal and the combined transverse decay rates, respectively. 

Physics Beyond the Standard Model  

Physics beyond the Standard Model (BSM) refers to the theoretical developments needed to explain the deficiencies of the 

SM. These include aspects such as the origin of mass, the strong CP problem, neutrino oscillations, matter-antimatter 

asymmetry, and the nature of dark matter and dark energy [9].  

Another problem lies in the mathematical framework of the SM itself due to the fact that the SM is inconsistent with that of 

general relativity, to the point that one or both theories break down under certain conditions, for example, within known 

space-time singularities like the Big Bang and black hole event horizons.  

The SM is inherently an incomplete theory. There are fundamental physical phenomena in nature that the SM does not 

adequately explain. The first area involves phenomena not explained which include gravity, dark matter and dark energy, 

neutrino masses, and matter-antimatter asymmetry.  Secondly, most theoretical predictions have not been observed up to 

date. 

The Effective Lagrangian and Decay Amplitude 

The most general effective Lagrangian for evqc   in presence of New Physics (NP), where sdq ,  can be written as 

[10,11] 
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  RLLLRLRLLLqc
F

eff cqlVcqlVV
G

L 



   

 1
2

4
 

RRRRRLLRRL cqlVcqlV 



  

~~
 

 

RLRRLRLL cqlScqlS   RLRLRLRRLL cqlScqlS  
~~

  

 

 ..
~

chcqlTcqlT RLRLLLRLRL  



                                                                                                   (22) 

 

where 
FG  is the Fermi constant, qcV   

is the relevant CKM Matrix element, and    vlcqvlcq LR ,,,
2

1
,,, 5

,








 



. The 

NP couplings denoted by RLV , , RLS , , and 
LT  involve left-handed neutrinos, whereas, those denoted by RLV ,

~
, RLS ,

~
, and LT

~
 

involve right-handed neutrinos. We assume the NP couplings to be real in our analysis. The projection operators are given by 

  2/1 5LP  and   2/1 5RP . Furthermore, we neglect the NP effects coming from the tensor couplings 
LT  and 

LT
~

 in our analysis. With this simplification, we obtain 

    5 5 51 1
2

F
eff cq V l A l

G
L V G l v q c G l v q c 

       


       

 

    cqlGcqlG lPlS 555 11    

 

    cqlGcqlG lAlV 555 1
~

1
~

 





   

  

     ..1
~

1
~

555 chcqlGcqlG lPlS                                                                                                               (23)  

                                   

where  

 RLV VVG 1 ,             
RLV VVG

~~~


, 

 

RLA VVG 1 ,             RLA VVG
~~~


, 

 

RLS SSG  ,                 
RLS SSG

~~~


, 

 

RLP SSG  ,                 RLP SSG
~~~

 .                                                                                                                          (24) 
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The SM contribution can be obtained once we set 0,,  RLRL SV  in Eq. (22) This implies that 1 AV GG  and all other 

NP couplings are zero. In order to compute the branching fractions and other observables for PlvD   and VlvD   

decay modes, we need to find various hadronic form factors that parametrizes the hadronic matrix elements of vector (axial 

vector) and scalar (pseudoscalar) currents between the initial D  and final state mesons. 

Therefore, from above, we see that expressions for lvD and  lvVPD ,  decay amplitude depends on non-

perturbative hadronic matrix elements that can be expressed in terms of D  meson decay constants and  VPD ,  

transition form factors, where P  denotes a pseudoscalar meson and V  a vector meson, respectively [12-15].  

From the Lorentz and parity invariance we obtain 

 

  00  pDcq  , 

 

    05  pDcqpP   , 

 

    0,   pDcqpV  .                                                                                                                                                  (25) 

 

To find the scalar and pseudoscalar matrix elements, we use the equation of motion and thus we have 

 

 
    qD

qc

D f
mm

m
ipDcq









2

50 , 

 

   
   

 2

0

22

qF
mm
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pDcqpP

qc
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 


 , 

 

   
 

   
q

qmm

qAm
pDcqpV

qc

V .
2

,
2

2

0
5








 


 .                                                                                                      (26) 

 

Decay Widths 

Finally, using the effective Lagrangian of Eq. (23) in the presence of NP, we are capable of computing the partial decay 

widths of lvD  and  lvVPD ,  beyond the SM. 

 

lvD  
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In the case of leptonic decay in the presence of NP, starting with Eq. (23) we arrive at 
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
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











2
2 ~~

P

dcl

D
A G

mmm

m
G


                                                                                                                          (27) 

 

where, in the SM, we have 1AG  and 0
~~

 PAP GGG , so that we have  

 

 
2

2

2
2

222

1
8 










D

l
cd

DDlF
SM

m

m
V

fmmG
lvD


                                                                                                            (28)   

                              

At this point, it is important to note that the right-handed neutrino couplings denoted by RLV ,

~
 and RLS ,

~
 appear in the decay 

width quadratically, whereas, the left-handed neutrino couplings denoted by RLV ,  and RLS ,  appear linearly. The linear 

dependence, arising due to the interference between the SM couplings and the NP couplings, is suppressed for the right-

handed neutrino couplings as it is proportional to a small factor m  and hence is neglected. 

  

 lvVPD ,  

 

Let us now proceed to discuss the PlvD   and VlvD   decays. In this section, we follow the helicity method of Refs. 

[16,17] for the semileptonic B  meson decays and apply it to our case of the D meson decays. Therefore, the differential 

decay distribution can be written as 

 

  

 





HL
q

m

m

pVG

ddq

d l

D

VPqcF

l










 

2

2

239

,

2
2

2
1

2cos
                                                                                                        (29) 

 

where L  and 
H are the usual leptonic and hadronic tensors, respectively. 

l  is the angle between  VP  meson and 

the lepton three momentum vector in the 
2q  rest frame. The three-momentum vector  VP

p
,  is defined as 

 

 
  

D

VPD

VP
m

qmm
p

2

,, 222

,




                                                                                                                                             (30) 
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where  

 
   cabcabcbacba  2,, 222

  .                                                                                                                  (31) 

 

Furthermore, the differential decay distribution for PlvD   in terms of helicity amplitudes 
0H , 

tH , and 
SH  is given 

by

  

 
2

2

02

2
2222

02
cos

~
sin2

cos 



































SS

l

VtlV
l

VVlP

l

GH
m

q
GHGH

q

m
GGHpN

ddq

d



 

 






































2
2

02

2
~~

cos
~

SS

l

VtlV
l GH

m

q
GHGH

q

m


                                                                                                         (32) 

where 

 

2

2

2

23

2
2

2

1
256 












q

m

m

qVG
N l

D

cqF


,    

 2

2
0

2
qF

q

pm
H

PD



 

 

 

 2

0
2

22

qF
q

mm
H PD

t




  ,  
   

 2

0

22

qF
mm

mm
H

qc

PD
S

 




.                                                                                          (33)                                                                             
 

                                                                                                                                                                                                           

Performing the integration over lcos , we can determine the differential decay 
2dqd P  rate and arrive at 

 

 















2

2
222

02 2
1

~

3

8

q

m
GGH

pN

dq

d l
VV

P
P

 





















































2
2

2
2

2

2
~~

2

3
SS

l

VtSS

l

Vt
l GH

m

q
GHGH

m

q
GH

q

m
                                                                                   (34) 

 

In the SM, we have 1VG  and the rest of the NP couplings are equal to zero and henceforth we  

Obtain 
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























  2

2

2

2

2
2

02 2

3

2
1

3

8

t
ll

P

SM

P

H
q

m

q

m
H

pN

dq

d
.                                                                                                        (35) 

On the other hand, let us now draw our attention to the differential decay distribution for VlvD   in terms of the helicity 

amplitudes 0 , 1 , 2 , P , and t . After a series of derivations, we arrive at a more simplified expression  

    

      222

2

222

1

2

2

2

21

~~
sin

~~
cos4 VVAAl

l
VAVAl GGGG

q

m
GGGG    

 

      2
2

02

2

cos
2

PP

l

AtlA
l G

m

q
GG

q

m
   

 

        2
2

0

~~
cos

~
PP

l

AtlA G
m

q
GG   ,                                                    (36)                                                                   

where from Eq. (36) we have 

       



















VD

VD

VDVD

V
mm

pm
qAmmqmm

qm

2
2

2

1

222

2
0

4

2

1


, 

 

    
   

2

2 2

1
1

qAmm VD 
, 

 

    

 

 VD

VD

mm

pqVm




2

4 2

2

, 

 

   

 
2

2

02

q

qApm
VD

t 

, 

 

    

 
   


dc

PD

P
mm

qApm




2

02
 .                                                                                                                                               (37) 

 

At this stage, we now perform the integration with respect to lcos  and arrive at the differential decay rate 
2dqd V  in its 



www.tsijournals.com | April-2017 

13 
 

 
 
 

simplicity form given by 

   









 22

2

2
222

2

2
2

2

~
3

~

2

~
3

23

8

tPAV
l

AVtPAV
l

AV

V
V

q

m

q

mpN

dq

d
  ,                                                                      (38) 

 

Where 

22

2

22

1

22

0

2

VAAAV GGG  
, 

 

22

2

22

1

22

0

2 ~~~~
VAAAV GGG  

, 

 

PP

l

AttP G
m

q
G 

2



, 

 

 PP

l

AttP G
m

q
G

~~~
2

  .                                                                                                                                                   (39) 

 

It is wise to remind ourselves at this stage that in the SM, 1 AV GG  and all the other NP couplings are zero. As a result 

Eq. (3.17) simplifies to 

 

 
























  2

2

2

2

2
2

2

2

1

2

02 2

3

2
1

3

8

t
ll

P

SM

V

q

m

q

mpN

dq

d
  .                                                                                      (40) 

 

Having obtained this gigantic task of deriving the analytical results for the decay rates, we now define a very important 

physical observable called the differential branching ratio (DBR). This is given by 

  

   
2

2
2

dq

ddqd
qDBR D

total







   ,                                                                                                                                     (41)  

 

where  

D

total


1
  is the total decay width of D  meson.                                                  

Results and Discussion 

For definiteness, we first present all the inputs that are pertinent for our calculation from Ref [4]. For the quark and lepton 

masses we use 025.0275.1)( cc mm GeV, 
5.0

3.08.4)GeV2( 

dm MeV, 595)GeV2( sm MeV, 511.0em
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MeV, 7.105m MeV, and 82.1776m MeV. In addition, for the meson masses and lifetime we use 

09.061.1869 D
m MeV, 016.0677.493 K

m MeV, 013.0611.4970 
K

m MeV, 8.05.895 K
m

MeV, 0006.09766.1340 


m MeV, 017.0862.547 m MeV, 25.026.775 m MeV, and 

  51071040 D
 s. 

From Ref [14] we obtain the input values for decay constant and the Fermi constant as  209.2 3.3
D

f    MeV, 

 248.6 2.7
sDf   MeV and 

51016637876.1 FG Ge/V
2
. On the aspect of the CKM matrix elements, we used 

numerical values given in TABLE. 1.  

TABLE 1. Numerical values of 
cdV  and 

csV . 

cdV  csV  References 

0.222 ± 0.008 0.986 ± 0.016 
[14] 

 

TABLE 2.  shows some of the decay modes considered in this work and their numerical values obtained with a comparison 

from theory. Our results are in the same range with those obtained by other scholars who has worked in the same line of 

research. The differences in the numerical values may be due to variation in our input values. Secondly, differences may also 

be due to the process of calculating resulting from rounding off figures. 

TABLE 2.  Leptonic decay width. 

Mode   llD     (s
-1

) 

This work Decay width Reference  

  D  6.754
1310  4.72

1310  
[17] 

  eD  3.122
1310  1.79

1310  
[17] 

  D  5.706
1510  

- - 

 

From Eq. (15) we obtained the branching ratios shown in TABLE. 3. 

 

TABLE 3. Leptonic branching ratios. 

Mode  This work Branching ratio  Experiment  References  

 

 

 

  D  

 

 

 

4.12
410  

(3.82 ± 0.32 ± 0.09) 
410  

CLEO [18] 

(3.71 ± 0.19 ± 0.06) 
410  

BES III [19] 

2.2 
410  

- [20] 
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2.87 
410  

- [17] 

4.3
310  

- [21] 

3.82
410  

Exp [2] [16] 

 

 

  eD  

 

 

9.42
810  

<8.8
610  

CLEO [18] 

1.0
810  

- [21] 

0.5
810  

- [20] 

<8.8
610  

Exp [2] [16] 

 

 

  D  

 

 

9.73
410  

<1.2
310  

CLEO [18] 

1.5
310  

- [20] 

7.54
410  

- [17] 

1.05
310  

- [21] 

<1.2
310  

 [2] [16] 

 

The pseudoscalar semileptonic PlD  decay width for the K  channel via the mode eD Ke    was found to be 

5.51
1510 s

-1
. Furthermore, some comparison of the branching ratios was looked at and the numerical values obtained are 

under Table 4. The numerical values obtained in the SM appear to be different from experimental values as a result of 

computation of the decay rates as this process encompassed a good number of constants determined theoretically and 

experimentally. 

TABLE 4. Branching ratios for 
0

eD e   , 
0

eD K e    and 
0

D K    . 

 

Mode  

 

This work 

 

Experiment 

 

References  

eeD    0
 3.91

210  (0.44 ± 0.06 ± 0.03)% [15] 

eeKD  
0

 9.98
210  (8.71 ± 0.38 ± 0.37)% [15] 

  
0

KD  10.45
210  (9.3 ± 0.7)% [4] 

 

There are other  sDD  to pseudoscalar semileptonic decay channels which deserve further studies. Our calculations and 
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experimental measurements are listed in TABLE 5. The calculations under these channels were taken with different trial of 

different decay mode and then compared to theoretical and experimental numerical values. As clearly seen our values seem to 

be in the acceptable range of values numerically despite the difference being so much especially with respect to the 

theoretical values cited under the same table. Without much clarification, it is clear that our values are a bit nearer to 

experimental than theoretical values. It is vital to mention that this work did not deal much on the computation of form 

factors under pseudoscalar decays as well as other forms of D  meson decays. 

 

TABLE 5. Branching ratios for 
D  and 



sD  to  . 

 

Mode  

BR BR(%)  

References  This work Theoretical Experiment  

eD e    2.01
210  

0.10 <0.5 [15] 

s eD e    3.15
210  

1.7  2.5 ±0.7 [15] 

 

For the vector VlD   decays, we took into consideration are eD e    and eD K e    .  TABLE 6 shows a 

comparison of the values obtained with other theoretical values. In addition to the partial decay rates under TABLE 6, this 

work also computed total decay width for 0D K e  and arrived at   

eeKD 0 2.9
1610 s

-1
. On the other 

hand, the branching ratio was found to be   

eeKDBr 0 4.6
410 . 

TABLE 6. Branching ratios for eD e    and eD K e    . 

Mode  Branching ratios References  

This work Theoretical  

eD e v   3.12
310  2.18

17.0

25.0





310    [4] 

eD K e   

 

4.98
210  (3.68 ± 0.10)% [4] 

 

We have seen the transition from Eq. (27) to Eq. (28) via fixing of our NP couplings by assigning AG 1 and the rest of the 

couplings equal zero. The same approach applies BSM.  

It is vital to note that experiments on a general view do not follow any theory hence making us check our results both from 

the theoretical aspect as well as experimental results. With this in mind, we now set the standard value of our NP coupling 

constants as per theory. The standard is usually set at 1.25 ± 0.04 where  ± 0.04.  

Now for our work, we needed to set the NP coupling constants in such a way as to arrive at the constraint contribution of 

each one of them. We began by focusing on the pure leptonic decay D e   . We used Eq. (27) and by setting the NP 
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coupling constants appropriately, we checked the contribution of each. The first step was to vary AG  and set the rest of the 

couplings to zero. 

 

FIG. 3. Graph of BSM  against 
2

AG  for eD e   . 

 

From FIG. 3. we see the dependence of the decay rate BSM on the NP coupling constant AG  . For  eD e    , the 

constraint for AG  is found to be  0.2,0.8
AGC  . The same method was applied to the other couplings and the results 

were as shown in TABLE 7. 

TABLE 7. NP coupling constraints for leptonic decay eD e   . 

NP coupling constant Constraints  

AG  [0.2,0.8] 

PG  [0.9,1.4] 

AG  [0.2,0.8] 

PG  [0.9,1.4] 

 

On the other hand, we looked at the pseudoscalar decay mode eD Ke   . FIG. 4 shows the dependence of the decay 

width on the NP coupling constant VG . Like-wise, this was achieving by varying VG  and setting the rest of the NP coupling 

constants to zero. Thereafter, varying each one of then and setting the rest to zero in order to attain the constraints for each 

constant. 

 

FIG. 4. Graph of BSM  against 
2

VG  for D Ke   . 
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It was deduced that the constraint for VG  is  1.2,1.6
VGC  . The contribution of the rest of the couplings are shown in 

TABLE 8. Finally, we considered the decay mode 0 eD K e    . The dependence of the decay width on VG  is shown in 

FIG. 5.  

 

 

FIG. 5. Graph of BSM  against 
2

VG  for 0D K e    . 

 

The constraint for VG  were estimated to be  0.2,0.9
VGC  . The rest of the constraints for the other couplings are shown 

in TABLE 9. 

TABLE 8. NP coupling constraints for pseudoscalar decay D Ke   . 

NP coupling constant  Constraints 

VG  [1.2,1.6] 

SG  [1.3,1.8] 

VG  [1.1,1.7] 

SG  [0.8,1.5] 

 

TABLE 9. NP coupling constraints for vector decay  0D K e    . 

NP coupling constant  Constraints 

VG  [0.2,0.9] 

AG  [0.5,1.6] 

VG  [0.6,1.2] 

AG  [0.3,1.4] 
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Conclusion 

The leptonic, pseudoscalar and vector decays have been studied under this work with the aid of the effective Lagrangian by 

including the allowed direct NP couplings. Charm decays has been and still is an exciting field for both theoretical and 

experimental investigations. Charm quark transition amplitudes, described in this work, represent a crucial tool to understand 

strong interaction dynamics in the non-perturbative regime. Complementary information that constrains model building and 

lattice gauge calculations is coming from the rich spectroscopy of charmed mesons and baryons, which is beyond the scope 

of this paper.  

Coming to our results, we see from our results that more needs to be done in order to understand the real phenomenology of 

physics BSM. Parameterization of decay constants into physical numerical values still remain a challenge among theorists. 

Nevertheless, more progress has been made in recent years to try and fuse in the gaps that the SM has left scholars with more 

questions than answers.   

From our results, we can see that a search for NP under D  meson decay is equally important as well as that of the B  meson. 

The results obtained under this work do not entail pure accuracy as earlier on mentioned as they are equally prone to errors 

just like those from experiments too. 
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