ISSN: 0974 - 7508

Volume 11 Issue 3

An Indian Journal

Full Paper NPAIJ, 11(3), 2015 [090-096]

Cytotoxic and antitubercular activity of new lupane-type triterpenoids from the nut of Anacardium occidentale

Yasser Selim*

Faculty of Specific Education, Zagazig University Name, Zagazig, (EGYPT) E-Mail: y2selem@yahoo.com

ABSTRACT

Two new lupane triterpenoids (2, 3) were isolated from the bioactive methanol extract of the fruit (nut) of Anacardium occidentale, along with three known compounds. The structures of the new compounds were elucidated based on spectroscopic data analysis. All new triterpenoids were evaluated for their in vitro antitubercular activity toward M. tuberculosis ATCC 27294. The isolated compounds 2 & 3 were tested in vitro for cytotoxic potential against MCF-7 cells (human breast cancer), BGC-823 cells (human gastric carcinoma) and A-549 cells (lung cancer). Compounds 3 exhibited significant cytotoxic activities against all tested tumor cell lines. © 2015 Trade Science Inc. - INDIA

INTRODUCTION

Anacardium occidentale L. (cashew), family Anacardiaceae, is widely grown in many tropical and subtropical countries. Nuts of A. occidentale have been used as a food ingredient, especially in oriental delicacies, and have great economic and medicinal value. β-Sitosterol was identified in the light petroleum extract of the tender leaves of A. occidentale, whereas ethyl gallate and methyl gallate were found using two dimensional paper chromatography in methanol extracts^[1]. Analysis of the leaves revealed major constituents such as (E)- β cymene, α -copaene and δ -cadinene. The major constituents of the fruit are palmitic acid, oleic acids, furfural, 4-hydroxydodecanoic acid lactone, (E)hexenal, (Z)-hex-3-enol and hexadecanol, whereas in the flowers, β -caryophyllene, methyl salycilate and benzyl tiglate were the main constituents^[2]. The main aldobiuronic acid present is 6-O-(β-D-

glucopyranosyl uronic acid)-D-galactose^[3]. The major components of the essential oil were cardol, cardanol, and anacardic acid^[4]. A. occidentale has been used in folk medicine in the treatment of skin and venereal diseases, respiratory problems and nervous disorder^[5]. A. occidentale leaves, stem and bark extracts have been reported to possess antidiabetic, anti-bacterial, anti-inflammatory and antiulcerogenic properties^[6]. Various extracts from other parts of the plants were reported to show breast antitumor activity^[7].

EXPERIMENTAL

General

Optical rotations were measured in MeOH or H₂O on a Perkin-Elmer241 polarimeter equipped with a sodium lamp (589 nm) and a 1 dmmicrocell. The melting points were determined using a digital

KEYWORDS

Anacardium occidentale; Triterpenoids; Epi-betulinic acid; Antitubercular activity.

melting point apparatus (model IA 8103, Electro thermal Engineering Ltd, Soutthend-on-Sea Essex, UK). IR spectra (KBr) were recorded on a Perkin-Elmer 1650 FT-IR spectrometer. ¹H and ¹³C NMR spectra were recorded in CDCl₂ on a Bruker Avance DRX-500 spectrometer (¹H at 500 MHz and ¹³C at 125 MHz), and 2D-NMR experiments were performed using Bruker's standard microprograms (XWIN-NMR version 2.6 software). EIMS were recorded on a Micromass TRIO-2000 GC/MS spectrometer, and HREIMS were recorded on a Finnigan/ Thermo Quest MAT 95. TLC was carried out on precoated silica gel 60 F254 (Merck), and spots were visualized by heating after spraying with 50% H_2SO_4 . Column chromatography was carried out on silica gel 60 (63–200 μ m, Merck).

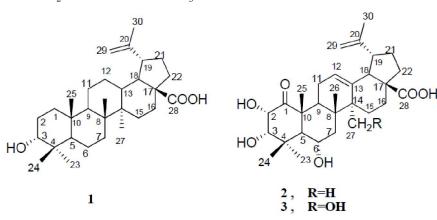
Plant material

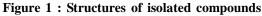
The nuts of *A. occidentale* L. were collected from a local market in Saudi Arabia (May, 2013), authenticated by Prof. Dr. F. Gamal, Head of Botany Department, Faculty of Science, Zagazig University, Zagazig, Egypt. A herbarium of the plant specimen (voucher number no. YOGA1 / No. BSI/ WC/ Tech/ 2008/69) was submitted at the same institute in Egypt.

Plant extract

The dried ground seeds of A. occidentale (1.5 kg) were exhaustively extracted with petroleum ether, EtOAc and MeOH successively. The extracts were concentrated In vacuo to give yellow solid (12.8 g), yellow brownish solid (21.2 g) and brown solid (15.4 g), respectively. The MeOH extract (12 g) was further partitioned using H₂O, MeOH and CHCl₃ (1:

1:1) to give the CHCl₃ extract. The CHCl₃ extract (5 g) was chromatographed on a silica gel column eluting with increasing gradient of *n*-hexane–EtOAc to give seventy 100 mL fractions. Similar fractions as determined by TLC were pooled together giving six combined fractions. Fraction 3 eluted with *n*-hexane/EtOAc (2:1) afforded 1 (22 mg) purified by recrystallization in petroleum ether. Fraction 7 eluted with 100% EtOAc was subjected to further purification by recrystallization in petroleum ether to give 2 (14 mg, t_R = 2.4 min) and 3 (19 mg, t_R = 3.8 min). See Figure 1.


1-oxo-2 α , 3 α , 6 α -trihydroxylup-12-en-28-oic acid (2)


- m.p. 218–220°C

m.p. 214–216°C

- $[\alpha]_{\rm p}$:+37.2 (*c* 1.00, CHCl₃)
- Rf: 0.39 (CHCl₃–MeOH, 1:1)
- IR (KBr) vcm⁻¹: 3541, 2955, 1710, 1635, 1430, 1381, 1294, 1161, 1081, 1036, 941
- 1 H NMR (500 MHz, CDCl₃): TABLE 1
- ¹³C NMR (125 MHz, CDCl₃): TABLE 1
- MS (EI, 70 eV): m/z (%) = 466 [M 2OH]⁺
 (23), 455[M COOH]⁺ (11), 419 [M COOH₃
 + 2OH]⁺ (17), 285 (43), 270 (22), 264 (17),204 (100), 136 (3).
- HR-EIMS: m/z [M]⁺ calcd for C₃₀H₄₄O₆: 500.6662; found: 500.6153.
- Anal. Calcd for C₃₀H₄₄O₆: C, 71.95; H, 8.85; O, 19.17. Found C, 71.92; H 8.81; O, 19.14

1-oxo-2α, 3α, 6α, 27-tetrahydroxylup-12-en-28oic acid (3)

Natural Products An Indian Journal

TABLE 1 : NMR spectroscopic data of isolated compounds in CDCl,

Desitions	2		3		
Positions –	¹ H	¹³ C	$^{1}\mathrm{H}$	¹³ C	
1	-	211.2	-	214.6	
2	4.3 dd(12.1,10.6)	79.1	3.5 dd(11.2,6.8)	78.2	
3	3.58d(2.5)	91.6	3.44d(3.12)	91.6	
4	-	35.9	-	36.2	
5	1.5m	51.3	1.52m	51.8	
6	3.27 br s	68.4	3.19 br s	68.8	
7	1.64m,1.32m	42.8	1.66m,1.39m	44.2	
8	-	29.1	-	48.7	
9	1.61m	37.4	1.54m	37.4	
10	-	41.9	-	40.7	
11	2.11m,1.72m	24.3	2.21m,1.72m	24.9	
12	5.82(dd2.1,8.2)	123.6	5.76(dd1.7,8.5)	124.1	
13	-	142.3	-	140.1	
14	-	27.6	-	57.1	
15	1.28m, 1.13m	24.2	1.28m, 1.13m	46.1	
16	1.61m, 1.36m	23.6	1.61m, 1.36m	44.2	
17	-	46.7	-	46.7	
18	2.51(dd3.2,8.1)	41.2	2.51(dd3.2,8.1)	42.1	
19	2.23d	49.3	2.23d	48.3	
20	-	141.2	-	142.3	
21	1.61m, 1.42m	27.3	1.61m, 1.42m	27.3	
22	1.83m, 1.53m	31.9	1.83m, 1.53m	30.5	
23	1.02s	23.6	0.99s	23.2	
24	1.02s	23.6	0.99s	23.2	
25	1.04s	16.5	1.02s	16.2	
26	1.66s	17.5	1.61s	17.5	
27	1.31s	25.7	2.39m,3.13m	65.4	
28	-	180.2	-	182.5	
29	5.11 br s,4.91 br s	110.1	5.12 br s,4.63 br s	111.4	
30	1.82s	23.8	1.77s	24.1	
2-OH	2.85	-	2.81	-	
3-OH	3.51	-	3.58	-	
6-OH	3.51	-	3.58	-	

-

- $[\alpha]_{\rm D}$:+39.1 (*c* 1.00, CHCl₃)
- Rf: 0.32 (CHCl₃-MeOH, 1:1)
- IR (KBr) vcm⁻¹: 3491, 2968, 1720, 1648, 1632, 1561, 1458, 1373, 1290, 1247, 1229, 1172, 1042, 971
- ¹H NMR (500 MHz, CDCl₃): TABLE 1
- ¹³C NMR (125 MHz, CDCl₃): TABLE 1
- MS (EI, 70 eV): m/z (%) = 482 [M 2OH]⁺ (11),471[M - COOH]⁺ (24), 435 [M - COOH₃

C

+ 2OH]⁺ (17), 288 (54), 270 (24), 264 (13),204 (100),179(11), 149 (3).

- HR-EIMS: m/z [M]⁺ calcd for C₃₀H₄₄O₇: 516.6659; found: 516.6171.
- Anal. Calcd for $C_{30}H_{44}O_7$: C, 69.72; H, 8.58; O, 21.67. Found C, 69.71; H, 8.55; O, 21.64

Antitubercular activity

Antitubercular activities of compounds 2 and 3

Natural Products

An Indian Journal

were assessed against *M. tuberculosis* H_{37} Rv ATCC 27294 using the micro plate Alamar blue assay (MABA)^[8]. The minimal inhibitory concentration (MIC) of the compound was defined as the concentration necessary to inhibit 90% of the mycobacterial growth in sterile 96-well plates (Falcon 3072; Becton Dickinson, Lincoln Park, NJ). Fluorescence measured in a Spectrafluor Plus was micro-fluorimeter (Tecan) in bottom reading mode, with excitation at 520 nm and emission at 590 nm. A sample with a MIC value $<125 \mu g/mL$ was defined as active against M. tuberculosis^[9]. As a standard control, the MIC value of isoniazid was determined on each microplate. The acceptable MIC of isoniazid ranged from 0.015 to 0.05 μ g/mL^[8].

In vitro cytotoxicity assay

The isolated compounds 2 & 3 were subjected to cytotoxic evaluation against A-549 cells (lung cancer), BGC-823 cells (human gastric carcinoma) and MCF-7 cells (human breast cancer) which, were obtained from Thessaloniki, Institute of Medical Science, Greece by employing the revised MTT method as described in the literature^[10]. Doxorubicin was used as the positive control. All tumor cell lines were cultured on RPMI-1640 medium supplemented with 10% fetal bovine serum, 100 U mL"1 penicillin and 100 µg/mL streptomycin in 25 cm³ culture flasks at 37 °C in humidified atmosphere with 50% CO_2 . For the cytotoxicity tests, cells in exponential growth stage were harvested from culture by trypsin digestion and centrifuging for 3 min, and then resuspended in fresh medium at a cell density of $5 \times$ 10⁴ cells per mL. The cell suspension was dispensed into a 96-well microplate at 100 µL per well, and incubated in humidified atmosphere with 50% CO₂ at 37 °C for 24 h, and then treated with the compounds at various concentrations (10, 50, 100 μ M). After 48 h of treatment, 50 µL of 1 mg/mL MTT solution was added to each well, and further incubated for 4 h. The cells in each well were then solubilized with DMSO (100 μ L for each well) and the optical density (OD) was recorded at 570 nm. All drug doses were tested in triplicate and the IC₅₀ values were derived from the mean OD values of the triplicate tests versus drug concentration curves. The 50% inhibition concentration (IC₅₀ value) was determined by curve fitting and was used as criteria to judge the cytotoxicity (active: IC₅₀ \ge 20 μ M; moderately active: 20 μ M < IC₅₀ \le 80 μ M; not active: IC₅₀ \ge 80 μ M).

RESULTS AND DISCUSSIONS

Chemistry

From the methanol, extract compound 2 was obtained as colorless needles, mp 218-220 °C. Its molecular formula was determined to be $C_{30}H_{AA}O_{A}$ by positive mode HR-EIMS {[M]+m/z 500.6153; calcd 500.6662). The ion at m/z 270 corresponding to the molecular formula $C_{15}H_{25}O_4^+$ indicated three hydroxyl groups were seemed to be located in the two rings A and B. The IR spectrum displayed the absorptions for OH (3541 cm⁻¹), C=O (1710 cm⁻¹) and C=C (1635 cm⁻¹) groups. The ¹³C NMR spectrum (TABLE 1) of 2 revealed thirteen carbon signals, which were deduced as six methyl, seven methylene, five methine, eight quaternary carbons, three secondary alcohols and one carboxylic acid. The ¹H NMR spectrum of 2 showed an olefinic proton signal ($\delta_{\rm H}$ 5.82, dd), three secondary alcohol groups at $\delta_{\rm H}$ 2.85 (br s, 2-OH) and $\delta_{\rm H}$ 3.51 (br s, 3, 6-OH), in addition to six tertiary methyl groups [δ_{0} 1.02, 1.02, 1.04, 1.31, 1.66, 1.82 (each 3H, s)] (TABLE 1). From the NMR spectra, an isopropenyl group $[\delta_{\rm H} 1.82 \text{ (3H, s)}, 5.11 \text{ (1H, br s)}, 4.91 \text{ (1H, br s)}; \delta_{\rm c}$ 23.8, 110.1, 141.2] and one carbonyl group [δ_{c} 180.2] were observed, suggested 2 to be a pentacyclic triterpene of the lupane family^[11, 12]. Assignments of the ¹H and ¹³C signals by 2D NMR spectra revealed that 2 was an analogue of lup-12-en-28-oic acid. The presence of the double bond at C-12 was confirmed by the chemical shifts of C-12 (δ_{c} 123.6) and C-13 (δ_c 142.3), characteristic of a "¹² skeleton^[13]. The remaining signal was characteristic for the oxygenated carbons, C-1 (δ_c 211.2). The ¹³C NMR analyses showed, no resonance for any oxygenated methylene and displayed instead to carbonyl signals at δ_c 180.2 indicated, a carbon atom bearing two oxygen, were assigned to a carboxyl groups at the C-28 positions. Based on the HMBC spectrum (Fig-

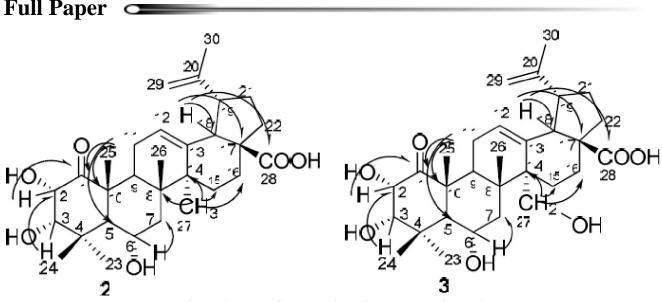
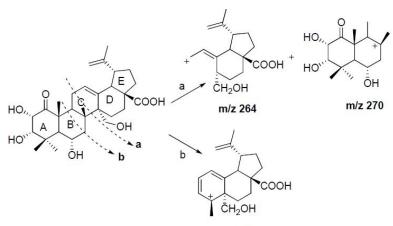


Figure 2 : HMBC correlation of compounds 2 and 3

ure 2), in which the H-18 [$\delta_{\rm H}$, 2.51(dd, J = 3.28.1Hz)] exhibited a correlation with the carboxyl group $(\delta_{1} 180.2)^{[14]}$. ¹³C NMR showed, the one downfield quaternary carbon signal at δ_{c} , 211.2 (C-1) and one downfield methine carbon signal 79.1 (C-2) showed the presence of ketonic and one hydroxyl functionality in the molecule^[15]. The location of the ketone group at C-1 was confirmed by the HMBC correlations of $\rm H_3\text{-}25~(\delta_{\rm H}~1.04)$ with C-1 ($\delta_{\rm c}~211.2)$ and of H-2 ($\delta_{\rm H}$ 4.3) with C-1 ($\delta_{\rm c}$ 211.2). Also, the HMBC correlations of H-3 ($\delta_{\rm H}$ 3.58) with C-2 ($\delta_{\rm c}$ 79.1) and the correlations of H-2 ($\delta_{\rm H}$ 4.3) and H-3 ($\delta_{\rm H}$ 3.58) with C-24 (δ 23.6) indicated that the two hydroxyl groups should be located at C-2 and C-3^[16]. In addition, the primary alcohol at C-6 confirmed by HMBC correlations with C-8 (δ_c 29.1), C-13 (δ_c 142.3), C-14 (δ_{c} 47.6), and C-15 (δ_{c} 24.2). While the C-27 methyl protons at δ_{α} 1.02 showed, correlations with C-14 (dc 27.6), C-15 (dc 24.2), and C-16 (dc 23.6) suggested, methyl group was attached to C-14 (Figur 2). The ¹³C NM R signals at C-2 (δc 79.1), C-3 (δc 91.6) and C-6 (δc 68.4) and its corresponding methine proton signals at H-2 ($\delta_{\rm H}$ 4.3 dd, J = 12.1, 10.6 Hz), H-3 ($\delta_{\rm H}$ 3.58 d, J = 2.5 Hz) and H-6 ($\delta_{\rm H}$ 3.27 br s), suggested the hydroxyl groups at C-2, C-3 and C-6 are α -substituted. In addition, the splitting nature with high J values indicated, the three hydroxyl groups at α position^[17, 18]. Based on the data above, compound 2 was designated as 1-oxo-2 α , 3 α , 6α-trihydroxylup-12-en-28-oic acid.


214–216°C. Its molecular formula was determined to be $C_{20}H_{44}O_7$ by positive mode HR-EIMS { [M]+m/z 516.6171), indicating 16 mass units larger than that of 2, suggesting replacement of the hydrogen of 2 by an OH in 3 and was confirmed by ¹³C NMR analyses. The methine proton from ¹³C NMR spectra resonance at H-2 ($\delta_{\rm H}$ 3.5 dd), H-3($\delta_{\rm H}$ 3.44 d), H-6 ($\delta_{\rm H}$ 3.19 br s) and 2H-27 ($\delta_{\rm H}$ 2.39m,3.13m) suggesting that the hydroxyl groups at C-2, C-3, C-6 and C-27 are α -substituted^[17,18]. The ¹H and ¹³C NMR data were closely related to those of 2. The position of the C-27 hydroxyl group was established from the HMBC data, in which the H-27b proton at δ_{H} 3.13 showed long-range correlations with C-8 (δ_c 48.7), C-14 (δ_{c} 57.1), C-15 (δ_{c} 46.1), and C-16 (δ_{c} 44.2). The presence of the double bond at C-12 was confirmed by the chemical shifts of C-12 (δ_{a} 123.9) and C-13 (δ_c 144.9). The methine proton from ¹³C NMR spectra resonance at H-2 ($\delta_{\rm H}$ 3.58, dd, J = 11.2, 6.8 Hz), H-3 ($\delta_{\rm H}$ 3.44, d, J = 3.12 Hz) and H-6 ($\delta_{\rm H}$ 3.19 br s), suggesting that the hydroxyl groups at C-2, C-3, C-6 and C-27 are α-substituted^[17, 18]. In addition, the MS fragmentation at m/z 270 indicated that the three hydroxyl groups were seemed to be located in the two rings A and B (Figure 3). Therefore, the structure of 3 was elucidated as 1-oxo-2 α , 3 α , 6 α , 27-tetrahydroxylup-12-en-28-oic acid.

Compound 3 obtained as colorless needles, mp

Besides compounds 2 and 3, three known compounds were isolated from *A. occidentale* namely,

Natural Products An Indian Journal

Full Paper

m/z 288 Figure 3 : Mass fragmentation patterns of 3

Compound	Molecular formula	MIC (µg/mL)
2	$C_{30}H_{44}O_{6}$	31.25
3	$C_{30}H_{44}O_7$	62.50
Isoniazid		0.03

TABLE 3 : In vitro cytotoxicity of compounds 2&3 against three human tumor cell lines (IC ₅₀ , μ M)	TABLE 3 : In vitro	cytotoxicity of	compounds 2	&3 against t	hree human	tumor cel	l lines (IC ₅₀ ,	μM)
--	--------------------	-----------------	-------------	--------------	------------	-----------	-----------------------------	-----

Compound	Molecular formula	IC ₅₀ MCF-7 BGC-823 A-549			
2	$C_{30}H_{44}O_{6}$	33.1	30.2	29.8	
3	$C_{30}H_{44}O_7$	13.9	11.2	7.5	
Doxorubicin		18.2	21	22	

Doxorubicin activities are expressed as IC50 values and those of compounds 2&3 are expressed as IC₅₀ values in μ M. (-) IC₅₀ > 100 μ M.

3-*epi*-betulinic acid (1)^[19], α -amyrin^[20] and β -sitosterol^[21]. The structures of the known compounds were determined by a combination of spectroscopic analysis and comparison with previously reported data.

Antitubercular activity

Based on the previous literatures, bioactive compounds, which have been isolated from plant extracts, were an attractive source of new drugs. On this basis, the antitubercular activities of compounds 2 and3 were assessed against *M. tuberculosis* ATCC 27294^[8], using the micro plate Alamar Blue assay (MABA). This methodology is non-toxic. These results showed that MICs 31.25 µg D mL for compound 2 and 62.50µgD mL for compound 3 (TABLE 2).

Cytotoxic activity

Compounds 2 & 3 were evaluated for their in

vitro cytotoxic potential against three tumor cell lines and the results were summarized in TABLE 3. Triterpenoids 3 exhibited significant cytotoxicity against MCF-7 cells (human breast cancer), BGC-823 cells (human gastric carcinoma) and A-549 cells (lung cancer), with IC₅₀ values of 13.9, 11.2 and 7.5, respectively. Triterpenoids 2 showed moderate cytotoxic activities against all assayed three tumor cell lines ($20 \ \mu M < IC50 \le 50 \ \mu M$). The Triterpenoids 2 & 3 isolated from *A. occidentale* shared the same basic skeletal structure with a wide variety of side chains. Due to their intrinsic structural variety and impressive biological activities, we suggest that the increasing of hydroxy group might strengthen the cytotoxic action.

CONCLUSION

In conclusion, two new lupane-type triterpenoids

Full Paper

are isolated from the nut of *A. occidentale* (Cashew). Based on spectroscopic techniques and chemical evidences, structures were elucidated as 1-oxo-2 α , 3α , 6α -trihydroxylup-12-en-28-oic acid (**2**) and 1oxo- 2α , 3α , 6α , 27-tetra hydroxy lup-12-en-28-oic acid (**3**). The present study indicated that two compounds **2** and **3** have antitubercular activity toward *M. tuberculosis* ATCC 27294. Compounds **2** & **3** exhibited significant cytotoxicity against MCF-7 cells (human breast cancer), BGC-823 cells (human gastric carcinoma) and A-549 cells (lung cancer).

Conflict of interest

The authors confirm that this article content has no conflict of interest.

ACKNOWLEDGEMENTS

Many thanks to Department of Chemistry, Faculty of science Aristotle University of Thessaloniki, Thessaloniki, Greece for the performance of some1D and 2D NMR and MS spectral analyses and many thanks to Prof. Dr Mamdouh Mousa, Faculty of Dentistry, P. Qassim University for the performance of antimicrobial assay. Guest or honorary authorship based solely on position (e.g. research supervisor, departmental head) is discouraged.

REFERENCES

- [1] S.S.Subramanian, K.J.Joseph, A.G.R; Nair.Phytochemistry, **8**, 673 (**1969**).
- [2] J.GS.Maia, E.H.A.Andrade, M.D.GB.Zoghbi; Journal of Food Composition and Analysis, 13, 227 (2000).
- [3] D.M.W.Anderson, P.C.Bell; Ana.Chim.Acta., 79, 185 (1975).
- [4] S.Sujatha, J. E.S.Baby; Internet Journal of Food Safety, 13, 150-156 (2011).
- [5] Y.Watanabe, R.Suzuki, S.Koike, K.Nagashima, M.Mochizuki, R.J.Forster, Y.Kobayashi; Journal of Dairy Science, 93, 5258 (2010).

- [6] D.A.Akinpelu; Fitoterapia, 72, 286 (2001).
- [7] I.Kubo, M.P.C.Ochi, A.Vieira, S.Komatsu; Journal of Agricultural & Food Chemistry, 41, 1012 (1993).
- [8] S.G.Franzblau, R.S.Witzig, J.C.Mclaughlin, P.Torres, P.Fuentes, M.B.Cook, G.Madico, A.Hernandez, M.T.Degnan, R.M.Quenzer Ferguson, P.Sheen, R.H.Gilman; Journal of Clinical Microbiology, 32, 362 (1998).
- [9] J.Q.Gu, Y.Wang, S.G.Franzblau, G.Montenegro, D.Yang, B.N.Timmermann; Planta Med., 70, 509 (2004).
- [10] Y.Zhang, J.Wang, D.Wei, X.Wang, J.Luo, L.Kong; Phytochemistry, 71 2199 (2010).
- [11] C.I.Chang, Y.H.Kuo; J.Nat.Prod., 62, 309 (1999).
- [12] F.Yuko, Y.Takeshi, W.Shun-ich, S.Kuniyoshi, M.Shunyo, T.Reiko; J.Nat.Prod., 69, 142 (2006).
- [13] D.V.Singh, M.M.Gupta, A.K.Tripathi, V.Prajapati, S.Kumar; Phytotherapy Research, 18, 131 (2004).
- [14] C.Hsiao, D.Ying-Chi, L.Mei-Chin, L.An-Shen, H.Pei-Wen, W.Chin-Chung, C.Shu-Li, Y.Hsin-Fu, C.Fang-Rong, W.Yang-Chang; J.Nat.Prod., 71 1352 (2008).
- [15] H.Safdar, R.Atta, M.I.Labal Choudhary, M.K.Khalid, L.Hamied, B.Ernst; Z.Naturforsch B, 57, 233 (2002).
- [16] P.A.Elenga, S.Nikolov, D.Panova; Pharmazie, 42, 422 (1987).
- [17] B.N.Su, Y.H.Kang, R.E.Pinos, B.D.Santarsiero, A.D.Meseca, H.H.S.Fong, J.M.Pezzuto, A.D.Kinghorn; Phytochemistry, 64, 293 (2003).
- [18] K.Belsner, B.Buchele, U.Werz, T.Syrovets, T.Simmet; Magnetic Resonancein Chemistry, 41, 115 (2003).
- [19] A.G.Gonzalez, J.A.Guillermo, A.G.Ravelo, I.A.Jimenez; J.Nat.Prod., 57, 400 (1994).
- [20] T.Suga, T.Shishibori; Phytochemistry, 14, 2411 (1975).
- [21] A.Navarrete, J.L.Trejo-Miranda, L.Reyes-Trejo; Journal of Ethnopharmacology, 79, 383 (2002).

Natural Products Au Indian Journal