ISSN : 0974 - 746X

Volume 6 Issue 1



Inorganic CHEMISTRY

## Trade Science Inc.

An Indian Journal Full Paper

ICAIJ, 6(1), 2011 [23-28]

# Crystal structure of two phosphates belonging to the Sb<sub>2</sub>O<sub>5</sub>-Cr<sub>2</sub>O<sub>3</sub>-P<sub>2</sub>O<sub>5</sub> system

Abderrahim Aatiq<sup>1\*</sup>, Rachid Bakri<sup>1</sup>, Btissame Haggouch<sup>1</sup>, My Rachid Tigha<sup>1</sup>, Said Benmokhtar<sup>1</sup>, Rodolphe Heyd<sup>2</sup>

<sup>1</sup>Université HassanII-Mohammédia, Faculté des Sciences Ben M'Sik, Département de Chimie, Laboratoire de Chimie des

Matériaux Solides, Avenue Idriss El harti, B.P. 7955, Casablanca, (MOROCCO)

<sup>2</sup>Centre de Recherche sur la Matière Divisée, CNRS, Université d'Orléans,

1B rue de la Férollerie 45071, Orléans Cedex 2, (FRANCE)

E-mail: a\_aatiq@yahoo.fr

Received: 28th November, 2010 ; Accepted: 8th December, 2010

### ABSTRACT

Structures of the two Sb<sup>v</sup><sub>1.50</sub>Cr<sup>III</sup><sub>0.50</sub> (PO<sub>4</sub>)<sub>3</sub> and (Sb<sup>v</sup><sub>0.50</sub>Cr<sup>III</sup><sub>0.50</sub>) P<sub>2</sub>O<sub>7</sub> phases, obtained by solid state reaction in air atmosphere at 950°C, were determined at room temperature from X-ray powder diffraction using the Rietveld method. Sb<sup>v</sup><sub>1.50</sub>Cr<sup>III</sup><sub>0.50</sub> (PO<sub>4</sub>)<sub>3</sub> belongs to the Nasicon-type structure (R $\bar{3}$  c space group, Z = 6, a<sub>hex.</sub> = 8.2770(1) Å and c<sub>hex.</sub> = 22.0605(2) Å). Their structure is built up by corner-sharing Sb(Cr)O<sub>6</sub> octahedra and PO<sub>4</sub> tetrahedra. XRD patterns of (Sb<sub>0.50</sub>Cr<sub>0.50</sub>) P<sub>2</sub>O<sub>7</sub> is indexed on a cubic unit cell similar to that of ZrP<sub>2</sub>O<sub>7</sub> (Pa $\bar{3}$  space group; Z = 4, a = 7.818(2) Å.). Their structure is built up from corner-shared SbO<sub>6</sub> or CrO<sub>6</sub> octahedra and P<sub>2</sub>O<sub>7</sub> groups. Within the structure, each P<sub>2</sub>O<sub>7</sub> shares its six vertices with Sb(Cr)O, octahedra and each Sb(Cr)O<sub>6</sub> octahedra is connected to six P<sub>2</sub>O<sub>7</sub> groups.

### **KEYWORDS**

X-ray powder diffraction; Antimony and chromium phosphate; Nasicon; Pyrophosphate; Rietveld refinement.

#### INTRODUCTION

As part of a search for new materials likely to exhibit interesting physical properties, several  $M_2^vO_5$ - $M_2^{\Pi}O_3$ - $P_2O_5$  systems (M= Ta, Nb, Sb; M'= Sb, Sc, In, Bi, Eu, Nd, Fe) have been partially or completely investigated and two principally  $M_{1.5}^vM_{0.50}^{\Pi}$  (PO<sub>4</sub>)<sub>3</sub> and ( $M_{0.50}^vM_{0.50}^{\Pi}$ )  $P_2O_7$  families of compounds have been prepared<sup>[1-9]</sup>.

Depending on the nature of M and M' species,  $M_{1.5}^{V}M_{0.50}^{III}(PO_4)_3$  family of materials is shown to exhibit a variety of structure-types (e.g., Nasicon (N),  $Sc_2(WO_4)_3$  (S) or  $Sb_{1.50}^{V}Bi_{0.50}^{III}(PO_4)_3$  (B)) which are



O(2)

36f

0.1900(8)



Figure 2 : Experimental (••) calculated (—) and difference profile of the XRD pattern of  $Sb_{1.50}Cr_{0.50}(PO_4)_3$ 





not simple distortions of each other. In the case of  $Sb^{v}_{1.50}Sb^{III}_{0.50}$  (PO<sub>4</sub>)<sub>3</sub>, two α- and β-forms for mixedvalence antimony are reported<sup>[3-6]</sup>. The α-form is monoclinic (P2<sub>1</sub>/n space group) with an S-type structure whereas the β-form is trigonal (R $\overline{3}$  space group) and isotypic to the known B-type structure<sup>[1]</sup>. XRD patterns of M<sup>IV</sup>X<sup>v</sup><sub>2</sub>O<sub>7</sub> compounds (M=Si, Ge, Sn, Pb, Ti, Zr, Hf, Mo, W, Re, Ce, Th, U; *X*=P, V, As) can be indexed, at least approximately, on a cubic

Inorganic CHEMISTRY An Indian Journal

 TABLE 1 : Results of the rietveld refinement of Sb<sub>1.50</sub>Cr<sub>0.50</sub>

 (PO<sub>4</sub>)<sub>3</sub>

| $Sb_{1.50}Cr_{0.50}(PO_4)_3$                  |                                                                      |                                |                         |           |                                    |  |
|-----------------------------------------------|----------------------------------------------------------------------|--------------------------------|-------------------------|-----------|------------------------------------|--|
| R 3 c Sp                                      | $R\overline{3}c$ Space Group (Z = 6, a = 8.277(2) Å; c = 22.06(1) Å; |                                |                         |           |                                    |  |
| V = 1309                                      | $P(1) Å^3$                                                           | )                              |                         |           |                                    |  |
| Convent                                       | ional R                                                              | ietveld R-fac                  | tors:                   |           |                                    |  |
| $R_{WP} = 12$                                 | 2.5%; F                                                              | $R_{\rm P} = 8.8\%; R_{\rm H}$ | $_{3} = 6.0\%; R_{F} =$ | = 5.7%    |                                    |  |
| Pseudo-V                                      | Voigt F                                                              | function:                      |                         |           |                                    |  |
| $PV = \eta L$                                 | $PV = \eta L + (1 - \eta)G (\eta = 0.386(2))$                        |                                |                         |           |                                    |  |
| Half-Width Parameters:                        |                                                                      |                                |                         |           |                                    |  |
| U = 0.069(9), V = -0.019(7), and W = 0.009(3) |                                                                      |                                |                         |           |                                    |  |
| atom                                          | site                                                                 | X                              | У                       | Z         | $\mathbf{B}_{iso}(\mathrm{\AA}^2)$ |  |
| Sb(Cr)                                        | 12c                                                                  | 0                              | 0                       | 0.1440(2) | 0.51(2)                            |  |
| Р                                             | 18e                                                                  | 0.2901(4)                      | 0                       | 0.25      | 1.15(2)                            |  |
| O(1)                                          | 36f                                                                  | 0.1651(7)                      | 0.9551(6)               | 0.1950(5) | 1.42(2)                            |  |

0.1570(6)

0.088(1)

1.42(2)

 $ZrP_{2}O_{7}$ -structure type (Z = 4, ao~8 Å, Pa<sub>3</sub> space group). Preparation and thermal expansion of some  $(M_{0.50}^{V}M'_{0.50}^{III}) P_2 O_7 (MM' = TaBi, NbBi, TaSb, TaNd,$ TaAl, TaFe, TaGa, NbIn and NbY) pyrophosphate compounds produced by replacing  $M^{IV}$ , in  $M^{IV}P_{2}O_{7}$ , with mixed MV/MIII cations were also reported[4-7]. Their room-temperature XRD patterns were indexed on a cubic unit cell similar to that of  $ZrP_2O_2$  but, up to now, no detailed structural determination for some of them was realized. More recently, our investigations on the  $Sb^{V}_{2}O_{5}-M'^{III}_{2}O_{3}-P_{2}O_{5}$  (M'= Fe, In) systems were especially led to synthesis and structural determination of  $Sb^{v}_{1.50}M^{'III}_{0.50}(PO_{4})_{3}$  and  $(Sb^{v}_{0.50}M^{'III}_{0.50})P_{2}O_{7}$ phases<sup>[8,9]</sup>.  $Sb_{1.50}^{0.50}$  Fe<sup>III</sup> (PO<sub>4</sub>)<sub>3</sub> belongs to the N-type phase (R32 space group) whereas  $Sb_{1,50}^{V}In_{0,50}^{III}$  (PO<sub>4</sub>)<sub>3</sub> is monoclinic (P2,/n space group) with an S-type structure. Both  $(M_{0.50}^{V}M_{0.50}^{'III}) P_2 O_7 (M' = Fe, In)$  pyrophosphates phases are shown to be isotypic to the orthorhombic  $\beta$ -Sb<sup>V</sup><sub>0.50</sub>Sb<sup>III</sup><sub>0.50</sub>P<sub>2</sub>O<sub>7</sub>-structure type<sup>[2]</sup>.

During the last years our interests were particularly focused on characterization of newly N-type phases (e.g.;  $A_{0.50}Sb^{V}Fe^{III}(PO_4)_3$ , A = Mn, Ca, Cd)<sup>[10,11]</sup>. In a continuation of our search the first objective of the present study is the synthesis and structural determination, using the Rietveld refinement of the XRD patterns of  $Sb^{V}_{1.50}Cr^{III}_{0.50}(PO_4)_3$  and  $(Sb^{V}_{0.50}Cr^{III}_{0.50})P_2O_7$ .

#### EXPERIMENTAL

Syntheses of  $Sb^{v}_{1.50}Cr^{III}_{0.50}$  (PO<sub>4</sub>)<sub>3</sub> and  $(Sb^{v}_{0.50}Cr^{III}_{0.50}) P_2O_7$  phosphates were carried out us-

25

| TABLE 2 : Powder diffraction data of Sb      | $V_{1.50}$ Cr <sup>II</sup> | $^{I}_{0.50}(PO_{4})_{3}$ |
|----------------------------------------------|-----------------------------|---------------------------|
| $(CuK\alpha_1; \lambda = 1.54056 \text{ Å})$ | 100                         | 0.00                      |

| Sb <sup>V</sup> <sub>1.50</sub> Cr <sup>III</sup> <sub>0.50</sub> (PO <sub>4</sub> ) <sub>3</sub> |                       |                            |                                   |  |  |
|---------------------------------------------------------------------------------------------------|-----------------------|----------------------------|-----------------------------------|--|--|
| hkl                                                                                               | d <sub>obs.</sub> (Å) | 100 I/I <sub>0</sub> (obs) | $100 \text{ I/I}_0 \text{ (cal)}$ |  |  |
| 012                                                                                               | 6.0104                | 59                         | 57                                |  |  |
| 104                                                                                               | 4.3711                | 100                        | 100                               |  |  |
| 110                                                                                               | 4.1385                | 100                        | 100                               |  |  |
| 113                                                                                               | 3.6065                | 50                         | 50                                |  |  |
| 024                                                                                               | 3.0052                | 51                         | 50                                |  |  |
| 116                                                                                               | 2.7486                | 41                         | 40                                |  |  |
| 211                                                                                               | 3.6890                | 5                          | 5                                 |  |  |
| 018                                                                                               | 2.5737                | 3                          | 3                                 |  |  |
| 214                                                                                               | 2.4317                | 19                         | 16                                |  |  |
| 300                                                                                               | 2.3894                | 17                         | 17                                |  |  |
| 208                                                                                               | 2.1855                | 3                          | 2                                 |  |  |
| 119                                                                                               | 2.1090                | 5                          | 5                                 |  |  |
| 220                                                                                               | 2.0692                | 4                          | 3                                 |  |  |
| 036                                                                                               | 2.0035                | 5                          | 3                                 |  |  |
| 312                                                                                               | 1.9565                | 2                          | 2                                 |  |  |
| 128                                                                                               | 1.9326                | 5                          | 5                                 |  |  |
| 0 2 10                                                                                            | 1.8787                | 6                          | 6                                 |  |  |
| 134                                                                                               | 1.8703                | 9                          | 9                                 |  |  |
| 226                                                                                               | 1.8033                | 9                          | 9                                 |  |  |
| 042                                                                                               | 1.7688                | 1                          | 1                                 |  |  |
| 2 1 10                                                                                            | 1.7107                | 10                         | 10                                |  |  |
| 404                                                                                               | 1.7043                | 1                          | 1                                 |  |  |
| 137                                                                                               | 1.6814                | 1                          | 1                                 |  |  |
| 318                                                                                               | 1.6126                | 3                          | 2                                 |  |  |
| 324                                                                                               | 1.5759                | 7                          | 6                                 |  |  |
| 410                                                                                               | 1.5642                | 7                          | 7                                 |  |  |
| 0114                                                                                              | 1.5390                | 1                          | 1                                 |  |  |
| 1 3 10                                                                                            | 1.4768                | 6                          | 5                                 |  |  |
| 2014                                                                                              | 1.4425                | 4                          | 4                                 |  |  |
| 146                                                                                               | 1.4393                | 6                          | 6                                 |  |  |
| 4 0 10                                                                                            | 1.3909                | 2                          | 2                                 |  |  |
| 054                                                                                               | 1.3875                | 3                          | 3                                 |  |  |
| 330                                                                                               | 1.3795                | 2                          | 2                                 |  |  |
| 1 2 14                                                                                            | 1.3621                | 3                          | 3                                 |  |  |
| 3 2 10                                                                                            | 1.3184                | 2                          | 2                                 |  |  |
| 244                                                                                               | 1.3155                | 3                          | 2                                 |  |  |
| 514                                                                                               | 1.2537                | 3                          | 2                                 |  |  |
| 3 1 14                                                                                            | 1.2349                | 2                          | 2                                 |  |  |
| 600                                                                                               | 1.1947                | 1                          | 1                                 |  |  |
| 2 3 14                                                                                            | 1.1377                | 2                          | 2                                 |  |  |
| 526                                                                                               | 1.0927                | 1                          | 1                                 |  |  |



Figure 4 : Experimental (•••) calculated (—) and difference profile of the XRD pattern of  $(Sb_{0.50}Cr_{0.50})P_2O_7$ 



Figure 5 : View of the structure of the cubic  $(\mathbf{Sb}_{0.50}\mathbf{Cr}_{0.50})\,\mathbf{P_2O_7}$  phase

ing conventional solid-state reaction techniques. Polycrystalline samples were prepared from mixtures of  $Cr_2O_3$  (Prolabo, 99 %),  $Sb_2O_3$  (Riedel-de Haën, 99.9 %), and  $NH_4H_2PO_4$  (Riedel-de Haën, 99 %) in stoichiometric proportions. The corresponding mixtures were heated progressively with intermittent grindings in air, between 200 and 950°C. The products of reaction were characterised by X-ray diffraction (XRD) at room temperature with a PANalytical X'Pert-PRO ( $\theta$ -2 $\theta$ ) diffractometer; using a diffracted-beam graphite and (CuK $\alpha$ ) radiation (45 kV, 40 mA). Experimental conditions included a divergence slit of 1° and antiscatter slit of 1°. XRD data were collected from 10 to 100°

Inorganic CHEMISTRY An Indian Journal

## Full Paper

20, in steps of 0.0084°, with a counting time of 30 s per step. The Rietveld refinement of the structure was performed using the Fullprof program<sup>[12]</sup>.

#### **RESULTS AND DISCUSSION**

Preliminarily experimental investigation in the  $Sb_2O_5$ - $Cr_2O_2$ - $P_2O_5$  ternary diagram foresees the possibility of two new  $Sb^{V}_{1.50}Cr^{III}_{0.50}(PO_4)_3$  and  $(Sb_{0.50}^{V}Cr_{0.50}^{III})P_2O_7$  phosphates within the pseudo-binary SbOPO<sub>4</sub>-Cr(PO<sub>3</sub>)<sub>3</sub> (Figure 1). Careful analysis of  $Sb_{1.50}Cr_{0.50}$  (PO<sub>4</sub>)<sub>3</sub> XRD data (Figure 2) confirms the similarity of its structure to that of MnTiCr  $(PO_4)_3$  Nasicon-type structure  $(R_{\overline{3}} c \text{ space group})^{[13]}$ . The general crystallographic formula for Nasicon phosphates can be written as  $[M2]_{2}[M1]X_{2}(PO_{4})_{2}$ . Therefore, the two sites usually labelled M1 and M2 in Nasicon phases are normally empty in Sb<sub>150</sub>Cr<sub>050</sub>  $(PO_4)_3$ . Hexagonal cell parameters of  $Sb_{1.50}Cr_{0.50}$  $(PO_4)_3$  Nasicon-phase are  $a_{hex} = 8.2770(1)$  Å and  $c_{hex} = 22.0605(2)$  Å). XRD spectrum of  $(Sb^{V}_{0.50}Cr^{III}_{0.50}) P_2O_7$  is completely indexed on the basis of an ideal cubic ZrP<sub>2</sub>O<sub>7</sub>-type structure. Obtained value of cubic cell parameter is a = 7.818(2) Å. The following structural refinements were based upon the above mentioned assumptions.

## Structure of $Sb^{V}_{1.50}Cr^{III}_{0.50}(PO_4)_3$

Initial starting parameters for the Rietveld refinement of Sb<sup>v</sup><sub>1.50</sub>Cr<sup>III</sup><sub>0.50</sub> (PO<sub>4</sub>)<sub>3</sub> were based on those already reported for the R $\overline{3}$  c structure of MnTiCr(PO<sub>4</sub>)<sub>3</sub><sup>[12]</sup>. We have assumed that Sb and Cr atoms were randomly distributed within the Nasicon framework (i.e. Sb(Cr) in the Ti(Cr) (12c site)). P and O atoms were localised in the 18e and 36f positions respectively. This refinement leads to acceptable reliability factors (i.e., R<sub>B</sub> = 6.0 %) (TABLE 1). A comparison of the experimental and calculated XRD profile of Sb<sup>v</sup><sub>1.50</sub>Cr<sup>III</sup><sub>0.50</sub>(PO<sub>4</sub>)<sub>3</sub> is shown in figure 2. Rietveld refinement parameters and final atomic parameters are given in TABLE 1.

A view of its crystal structure along c-axis is shown in figure 3. Structure is built up by a corner-sharing of Sb(Cr)O<sub>6</sub> octahedra and PO<sub>4</sub> tetrahedra in such a way that each octahedron is surrounded by six tetrahedra and each tetrahedron is connected to four octahedra. Sb(Cr)-O distances values (Sb(Cr)-O(1) = 1.944(3);



Figure 6 : Connectivity between Sb(Cr)O<sub>6</sub> octahedra and  $P_2O_7$  group in (Sb<sub>0.50</sub>Cr<sub>0.50</sub>)P<sub>2</sub>O<sub>7</sub>

Sb(Cr)-O(2) = 1.909(3) Å) are in agreement with the ionic radii values of Sb<sup>+5</sup> and Cr<sup>3+</sup> ions in six coordination<sup>[14]</sup>. P-O distances values (1.507(3) Å; 1.515(3) Å) are comparable to those generally found in Nasicon-like phosphate. X-ray powder data of Sb<sub>1.5</sub>Cr<sub>0.50</sub> (PO<sub>4</sub>)<sub>3</sub> derived from the Rietveld refinement (CuK $\alpha$ 1 : 1.54056 Å) are presented in TABLE 2.

## Structure of (Sb<sub>0.50</sub>Cr<sub>0.50</sub>)P<sub>2</sub>O<sub>7</sub>

The structural parameters of the cubic  $(Ta_{0.50}Bi_{0.50})$  $P_2O_7$  pyrophosphate<sup>[4]</sup> were used as starting parameters for the Rietveld refinement of  $(Sb_{0.50}Cr_{0.50})P_2O_7$ . During the Rietveld refinement, Sb and Cr atoms in  $(Sb_{0.50}Cr_{0.50}) P_2O_7$  are supposed to reside in the Ta(Bi) (000) 4a position. P, O(1) and O(2) atoms are located in the 8c, (1/21/21/2) 4b and 24d positions respectively. This refinement leads to acceptable reliability factors (i.e.,  $R_{\rm B} = 7.2$  %) (TABLE 3). Observed, calculated, and difference XRD patterns of  $(Sb_{0.50}Cr_{0.50}) P_2O_7$  are given in figure 4. Final atomic coordinate and results of the Rietveld refinement are reported in TABLE 3. View of the structure of the cubic  $(Sb_{0.50}Cr_{0.50})P_2O_7$  phase showing the linkage between Sb(Cr)O<sub>6</sub> octahedra and  $P_2O_7$  groups are shown in figure 5. As shown in figure 6, the structure is built up from corner-shared  $Sb(Cr)O_{6}$  octahedra and  $P_{2}O_{7}$  groups. The P-O distance values (P-O(1) = P-O(2) = 1.503(3) Å)show that  $PO_4$  tetrahedra are regular. There is one

Full Paper

| TABLE 3 : Results                | of | the | rietveld | refinement | of |
|----------------------------------|----|-----|----------|------------|----|
| $(Sb_{0.50}Cr_{0.50})P_{2}O_{7}$ |    |     |          |            |    |

 $\begin{array}{l} (Sb_{0.50}Cr_{0.50})P_2O_7\\ \hline (Sb_{0.50}Cr_{0.50})P_2O_7\\ \hline Pa\ 3\ Space\ Group\ (Z=4,\ a=7.818(2)\ \text{\AA};\ V=478(1)\ \text{\AA}^3]\\ \hline Conventional\ Rietveld\ R-factors:\\ R_{WP}=11.8\%;\ R_P=8.8\%;\ R_B=7.2\%;\ R_F=6.0\%\\ \hline Pseudo-Voigt\ Function: \end{array}$ 

 $PV = \eta L + (1-\eta)G (\eta = 0.241(1))$ 

Half-Width Parameters:

U = 0.538(2), V = -0.096(5), and W = 0.018(3)

| atom   | site | Х         | У         | Z         | $\mathbf{B}_{iso}(\mathbf{A}^2)$ |
|--------|------|-----------|-----------|-----------|----------------------------------|
| Sb(Cr) | 4a   | 0         | 0         | 0         | 1.3(1)                           |
| Р      | 8c   | 0.3890(3) | 0.3890(3) | 0.3890(3) | 1.9(1)                           |
| O(1)   | 4b   | 0.50      | 0.50      | 0.50      | 2.3(1)                           |
| O(2)   | 24d  | 0.2010(4) | 0.4071(6) | 0.4250(5) | 2.3(1)                           |

TABLE 4 : Powder diffraction data of  $(Sb_{0.50}Cr_{0.50}) P_2O_7$ (CuK $\alpha_1$ ;  $\lambda = 1.54056$  Å)

| $(Sb_{0.50}Cr_{0.50})P_2O_7$ |                       |                            |                                   |  |  |  |
|------------------------------|-----------------------|----------------------------|-----------------------------------|--|--|--|
| hkl                          | d <sub>obs.</sub> (Å) | 100 I/I <sub>0</sub> (obs) | $100 \text{ I/I}_0 \text{ (cal)}$ |  |  |  |
| 111                          | 4.5137                | 36                         | 36                                |  |  |  |
| 200                          | 3.9090                | 100                        | 100                               |  |  |  |
| 210                          | 3.4963                | 29                         | 28                                |  |  |  |
| 211                          | 3.1917                | 25                         | 25                                |  |  |  |
| 220                          | 2.7640                | 26                         | 24                                |  |  |  |
| 311                          | 2.3572                | 24                         | 24                                |  |  |  |
| 222                          | 2.2568                | 6                          | 6                                 |  |  |  |
| 230                          | 2.1683                | 2                          | 2                                 |  |  |  |
| 400                          | 1.9545                | 1                          | 1                                 |  |  |  |
| 410                          | 1.8961                | 1                          | 1                                 |  |  |  |
| 331                          | 1.7935                | 4                          | 4                                 |  |  |  |
| 240                          | 1.4781                | 7                          | 6                                 |  |  |  |
| 422                          | 1.5958                | 5                          | 5                                 |  |  |  |
| 511                          | 1.5045                | 9                          | 8                                 |  |  |  |
| 440                          | 1.3820                | 3                          | 2                                 |  |  |  |
| 351                          | 1.3214                | 2                          | 2                                 |  |  |  |
| 442                          | 1.3029                | 2                          | 2                                 |  |  |  |
| 260                          | 1.2361                | 1                          | 1                                 |  |  |  |
| 533                          | 1.1922                | 1                          | 1                                 |  |  |  |

 $P_2O_7$  group-type. The two PO<sub>4</sub> tetrahedra within a  $P_2O_7$  group are connected via the O(1) oxygen (Figure 6). Every  $P_2O_7$  group is connected to six Sb(Cr)O<sub>6</sub> octahedra. Note that Sb(Cr) atoms are coordinated by six O(2) atoms (Figure 6). The Sb(Cr)-O(2) distance within a Sb(Cr)O<sub>6</sub> octahedra has a value of 1.828(3) Å. X-ray powder data of (Sb<sub>0.50</sub>Cr<sub>0.50</sub>)P<sub>2</sub>O<sub>7</sub> derived from the Rietveld refinement (CuKα1 : 1.54056 Å) are presented in TABLE 4.

### CONCLUSION

Structures of the two new  $Sb_{1,50}Cr_{0,50}(PO_4)_3$  and  $(Sb_{0.50}Cr_{0.50})P_2O_7$  phosphates using Rietveld technique on the polycrystalline compounds, have been carried out.  $Sb_{1,5}Cr_{0,50}(PO_4)_3$  crystallizes in the rhombohedral ( $R\overline{3}c$ space group) Nasicon structure whereas  $(Sb_{0.50}Cr_{0.50})P_2O_7$  is shown to be isotypic with the cubic pyrophosphate  $ZrP_2O_7$  (Pa $\overline{3}$  space group). A statistical cationic distribution of Sb<sup>5+</sup> and Cr<sup>3+</sup>, within both  $Sb_{15}Cr_{050}(PO_4)_3$  and  $(Sb_{050}Cr_{050}) P_2O_7$  frameworks, has obtained. It is of interest to note that in the case of an ordered cationic distribution, the expected space group should be  $R_{\overline{3}}$  or R32 for Nasicon phase and Pna2, for the pyrophosphate compound. Generally, ordering of two cations, within a framework, is dependent on the size difference and/or charge imbalance between them. In our recently reported study, on the  $Sb^{V}_{2}O_{5}$ -Fe<sup>III</sup><sub>2</sub>O<sub>3</sub>-P<sub>2</sub>O<sub>5</sub> system, we have shown the presence of a high tendency of an ordered cationic distribution between Sb5+ and Fe3+ cations within the two  $Sb_{1,50}Fe_{0,50}(PO_4)_3$  and  $(Sb_{0.50}Fe_{0.50}) P_2O_7$  frameworks. The cation ordering, within the octahedral framework of both Sb<sub>150</sub>Fe<sub>050</sub>  $(PO_4)_3$  and  $(Sb_{0.50}Fe_{0.50}) P_2O_7$  compounds, was shown to be dependant of the difference between oxidation states of Sb<sup>5+</sup> and Fe<sup>3+</sup> cations. In fact, since the ionic radii values of Sb<sup>5+</sup> and Cr<sup>3+</sup> cations are relatively comparable, the force driving behind the absence of a cation ordering, within the octahedral framework of both  $Sb_{1.50}Cr_{0.50}(PO_4)_3$  and  $(Sb_{0.50}Cr_{0.50})P_2O_7$  compounds, is not completely understood.

#### ACKNOWLEDGEMENTS

The authors acknowledge Prof. H. Hannache and Dr. Y. Abboud (Centre d'analyse et de recherche du compus Ben M'Sik (CARB) for technical assistance.

#### REFERENCES

- S.Oyetola, A.Verbaere, D.Guyomard, Y.Piffard; J.Solid State Chem., 77, 102 (1988).
- [2] A.Verbaere, S.Oyetola, D.Guyomard, Y.Piffard; J.Solid State Chem., **75**, 217 (**1988**).
- [3] A.Jouanneaux, A.Verbaere, D.Guyomard, Y.Piffard, S.Oyetola, A.N.Fitch; Eur.J.Solid State Inorg.Chem., 28, 755 (1991).



# Full Paper

- [4] S.Oyetola, A.Verbaere, D.Guyomard, M.P.Grossnier, Y.Piffard, M.Tournoux; Eur.J.Solid State Inorg.Chem., 28, 23 (1991).
- [5] A.Jouanneaux, N.Fitch, S.Oyetola, A.Verbaere, D.Guyomard, Y.Piffard; Eur.J.Solid State Inorg.Chem., 30, 125 (1993).
- [6] K.Kasahara, H.Imoto, T.Saito; J.Solid State Chem., 118, 104 (1995).
- [7] T.Varga, A.P.Wilkinson, M.S.Haluska, E.A.Payzant; J.Solid State Chem., 178, 3541 (2005).
- [8] A.Aatiq, R.Bakri; Powder Diffr., 22, 47 (2007).

- [9] A.Aatiq, R.Bakri, A.R.Sakulich; Powder Diffr., 23, 232 (2008).
- [10] A.Aatiq, R.Hassine, R.Tigha, I.Saadoune; Powder Diffr., 20, 33 (2005).
- [11] A.Aatiq, R.Tigha, R.Hassine, I.Saadoune; Powder Diffr., 21, 45 (2006).
- [12] J.Rodriguez-Carvajal; 'Fullprof, Program for Rietveld Refinement', Laboratoire Léon Brillouin (CEA-CNRS) Saclay, France (1997).
- [13] A.Aatiq, C.Delmas, A.El Jazouli, P.Gravereau; Ann.Chim.Sci.Mater., 23, 121 (1998).
- [14] R.D.Shannon; Acta Crystallogr.A, 32, 751 (1976).