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INTRODUCTION

Various scatter processes of photons lead to blurring
of images produced by CT/CBCT or portal imaging
(KV/MV domain), and similar scatter problems arise in

almost all disciplines of physics (e.g. transverse profiles
and Bragg curves of proton beams in radiotherapy).
Multiple scatter can be described by, at least, one single
Gaussian kernel[1-6], which we formally abbreviate by K(s,
u � x), but it may refer to more than one space dimension.
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Scatter processes of photons lead to blurring of images produced by CT (computed tomogra-
phy) or CBCT (cone beam computed tomography) in the KV domain or portal imaging in the
MV domain (KV: kilovolt age, MV: megavoltage). Multiple scatter is described by, at least, one
Gaussian kernel. In various situations, this approximation is crude, and we need two/three
Gaussian kernels to account for the long-range tails (Landau tails), which appear in the
Molière scatter of protons, energy straggling and electron capture of charged particles passing
through matter and Compton scatter of photons. If image structures are obtained by measure-
ments, these structures are always blurred by scattering. The ideal image (source function) is
subjected to Gaussian convolutions to yield a blurred image recorded by a detector array. The
inverse problem is to obtain the ideal source image from measured image. Deconvolution
methods of linear combinations of two/three Gaussian kernels with different parameters s
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 can be derived via an inhomogeneous Fredholm integral equation of second kind (IFIE2)

and Liouville - Neumann series (LNS) to provide the source function . A comparison with
previously published results is a main purpose in this study. The determination of scatter
parameter functions s
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 can be best determined by Monte-Carlo simulations. We can verify

advantages of the LNS in image processing applied to detector arrays of portal imaging of
inverse problems (two/three kernels) of CBCT, IMRT (intensity-modulated radiotherapy),
proton scanning beams and IMPT (intensity-modulated proton therapy), where the previous
method is partially not applicable. A particular advantage of this procedure is given, if the
scatter functions s
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 are not constant and depend on coordinates. This fact implies that the

scatter functions can be calibrated according to the electron density 
electron 

provided by image
reconstructions. The convergence criterion of LNS can always be satisfied with regard to the
above mentioned cases. A generalization of the present theory is given by an analysis of
convolution problems based on the Dirac equation and Fermi-Dirac statistics leading to
Landau tails. This generalization is applied to Bethe-Bloch equation (BBE) of charged par-
ticles to analyze electron capture. The methodology can readily be extended to other disci-
plines of physics.
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The ideal image (source function  without any blurring)
is subjected to a Gaussian convolution in order to yield an
image function  (blurred image), which may be recorded
by a detector array:
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The magnitude of the parameter s represents a measure
of the severeness of blurring that as s  0 the kernel K
tends to the -distribution and  becomes identical with
.

In many situations the restriction to one Gaussian ker-
nel represents a crude approximation, and we need a lin-
ear combination of Gaussian kernels with K

g 
as a resulting

convolution kernel to account for long-range tails, which
appear in the Molière multiple scatter theory of protons
and inclusion of Landau tails[1-6,8,9] or in Compton scatter
of -quanta[7]:
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In every case, the parameters in equation (2c) have to sat-
isfy c
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. The restriction to

two Gaussian kernels results by setting c
2
 = 0. If c
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  0, c
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can also be less than zero, but K
g
  0 has still to be valid.

The previously published method[5] of the inverse task of
K

g
 requires 2sss 021  . This restriction can lead to criti-

cal cases (proton dosimetry, image processing with CBCT).
Therefore the LNS method can circumvent this restric-
tion, since it only needs that s

1
  s

2
 > s

0
 is satisfied (section

2.2).
The inverse problem of equation (1) is to determine

the ideal source image from a really determined image. If
the scatter parameters are known (e.g. rms value s of
Gaussian kernels via appropriate test measurements or
Monte-Carlo simulations), we are able to calculate the ide-
alistic source structure by an inverse kernel K-1(s, u � x):
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Due to many applications the inverse kernel K-1(s, u-x) of
a single Gaussian kernel K(s, u � x) is a proven tool cir-
cumventing ill-posed aspects[9-13,22-24,26,27]. A possible rep-
resentation of the inverse kernel K-1(s, u � x) is given by:
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H
2n

 refer to Hermite polynomials of even order and the
inverse kernel K-1 can be regarded as a generalized Gaussian

convolution kernel. The coefficients c
n
 of the two-point

Hermite polynomials of K-1 are determined by a Lie se-
ries expansion. Both kernels K and K-1 shall be derived as
Green�s functions in the following section. For practical
applications, we have to restrict N to a finite limit (N <
), and the question arises, which N provides sufficiently
accurate results. Based on formula (4) there have been put
forward many applications in radiation physics, mainly with
regard to the deconvolution problem of the finite detec-
tor size in radiation profiles[9-13]. It should also be noted
that the simplest, but well-known solution function c(, t)
= N(t)·exp(-2/(4Dt)) of the heat/diffusion equation is a
Gaussian kernel[14-18]. The initial condition of this solution
function implies a -function resulting from c(, t  0) =
(). The inverse problem of this distribution function[16-

18] is similar to the problem given by equation (3); it repre-
sents a typical case of an ill-posed problem and requires
regularizations techniques (the inverse of the ä-function is
not defined), which have been studied by the aforemen-
tioned authors. However, it appears that in this field the
EM algorithm[19-21] has proven to be valuable.

The intention of this study is to extend these consid-
erations to the inverse problem of a linear combination
of two/three Gaussian convolution kernels K

g
-1(s
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, u � x) according to equations (2 � 2c), in order to

found applications to aforementioned image processing,
where a single Gaussian kernel would represent a crude
approximation. The kernels K
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and K
g
-1 account for long-range tails in multiple scatter

problems such as Landau tails. Since the resulting kernels
K

g
 incorporate linear combinations with different rms-val-

ues s
0
, s

1
, s

2
, they may be regarded as Gaussian-like with

long-range tails as being requested in many tasks. In this
communication, we shall develop a new solution proce-
dure of the inverse problem of a linear combination of
two/three Gaussian kernels, which avoids the determina-
tion of the deconvolution kernel K

g
-1, namely its formula-

tion by an IFIE2 and related LNS to calculate solutions in
every desired order. The results obtained by the LNS pro-
cedure will be compared with the different procedure to
calculate K

g
-1 from K

g
, which has been previously pub-

lished. With regard to applications we preferably consider
problems of image processing in the KV and MV do-
main. In the next section, the inverse kernel K

g
-1 will be

developed according to an IFIE2 and LNS procedure; it
represents a tool in IMRT and intensity-modulated pro-
ton therapy (IMPT), see e.g.[8,22-24]. We should also point
out that in many problems of deconvolutions fast Fourier
transforms (FFT) together with Wiener filters are applied.
A very concise paper on Fourier-based deconvolutions
and filter functions has been given in a review paper[25].
However, some critical aspects result from Fourier-based
deconvolutions applied to step functions and are usually
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referred to as �ill-posed� (see some applications given in sec-
tion 3). These well-known problems have already accounted
for[5,23-26,29]. Since Gaussian and Gaussian-like convolutions/
deconvolutions play a significant role in many disciplines of
physics, engineering[5-13,19-29], electron capture of charged
particles by passing though matter (based on the Dirac equa-
tion and Fermi-Dirac statistics this aspect will be discussed
in section 2.6), and even in spectroscopic tasks in molecular
biology (e.g. removal of scatter in structure elucidations of
bio-molecules by nuclear magnetic resonance (NMR) and
X-rays), reliable toolkits for inverse procedures are desir-
able, which are able to circumvent ill-posed aspects under
some restrictions. It should be pointed out that further vari-
ous applications of Gaussian convolutions/deconvolutions
with regard to statistical problems in disciplines beyond the
physical scope which we did not discuss here can easily be
obtained by a look at internet.

METHODS

In many problems of mathematical physics it is con-
venient to start with a differential operator formulation
and, thereafter, to pass to the corresponding integral equa-
tion via Green�s function method. Thus the path integral
quantization is a very prominent example[32]. At first, we
shortly summarize previous results[5,9], which should be
consulted by those readers with need of more detailed
information. A very convenient way is the operator for-
mulation to derive the Gaussian convolution kernel as a
Green�s function and the related inverse problem.

Operator calculus (Lie series of operators) and the
derivation of the inverse kernels

The basic formulas of all subsequent procedures and
calculations are the following two operator functions:
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The operators O and O-1 and their related actions to a
class of functions are formally defined by Taylor series of
the exponential functions, which represent Lie series of
operator functions[5-7,15,32,33]:
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O and O-1 obey the following relation:
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In three dimensions, we have to substitute operator d2/
dx2 by the 3D Laplace operator :
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If (x) represents a source and (x) an image function,
the following relationships have to be satisfied:

.)x(O)x( 1   (9)
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It can be concluded from relations (6 � 9a) that all per-
mitted functions (x) and (x) have to belong to the space
C (Banach space), which implies that both sets (x) and
(x) are defined by derivatives of infinite order. Accord-
ing to the relations (9) and (9a) the integral operator nota-
tions of equations (1) and (3) have to represent Green�s
functions of O-1 and O:
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The integral operator kernel K(s, u-x) is the normalized
Gaussian kernel of equation (1), which may be based on
the spectral theorem of functional analysis[5]. The essential
difference between differential and integral operator for-
mulation is the class of the permitted functions.

The differential operator formulations according to
relations (9 and 9a) require the only restriction that  and
 belong to C. By that, the action of the operator O
does not lead to an ill-posed operation and to a necessary
regularization, as long as the requirement of a norm has
not to be account for with regard to  and .

The following relations are valid for all kinds of
Green�s function, i.e. a jump at u = x:
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According to the rules of Lie series the multiplication of
O·K with O-1 from the left-hand side implies the expres-
sion K(s, u - x) = O-1·(u - x).

With the help of the Fourier representation of (u-x)
the operation O-1·(u-x) provides:
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The evaluation of equation (12) provides the Gaussian
kernel (1).

We now perform the identical procedure via multi-
plication of equation (11a) with the operator O. By that
we obtain:
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The Fourier transform of (u-x) in the right-hand side of
equation (12a) leads to the term exp(0.25·k2·s2) and, the
inverse kernel K-1 assumes an awkward feature. The source
function  may be determined by evaluation of the fol-
lowing integral:

.dkdu)xkiexp()ukiexp()ks25.0exp()u()x( 22
2
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Thus K-1(s, u � x) can only be regularized, if (u) vanishes
sufficiently fast, and the Green�s function related to the
operator O cannot be derived from the analogue expres-
sion of formula (12a). In order to derive the integral op-
erator kernel K-1 of the operator O via Lie series, we have
to carry out some operations in equations (11) and (11a):
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By elimination of O·(u � x) in both equations (13) and
(13a) the inverse operator K-1 can be constructed. The
most essential feature results from the operator O2:
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The action of the operator O2 is obtained by its Lie series
applied to K:
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The right-hand side of equation (13c) can be written in
terms of Hermite polynomials, which yields relation (4).
With the help of relations (10a) and (13c) we are able to
calculate the inverse problem of a Gaussian convolution
by two different ways; both result from equation (13d):
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1. Integration with the kernel K (convolution) and subse-
quent differentiation of the result with O2.

2. Integration of  with the kernel K-1, i.e. the Hermite
polynomials are accounted for in all terms.

As already mentioned the integral operator K only re-
quires the Banach space L

1
(-, +) of Lebesque-inte-

grable functions, whereas with regard to K-1 there are some
restrictions. However, in those cases, where  is only non-
vanishing in a finite interval with L

1
(a, b), the inverse prob-

lem with the integral operator K-1 always exists. This fact
has an important meaning in practical applications, where
summations in finite intervals have to be accounted for
(step functions, voxel integrations). The integral operator
correspondence to the relation O·O-1 = 1 is given by the
following equation:
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It has to be mentioned that relation (14) is also valid for
every kind of integral operators, if both K and K-1 exist.
There are various problems, where the differential opera-

tor calculus is easier to handle, e.g. the derivation of basic
formulas, and we mention the properties of iterated ker-
nels. The repeated application (n times) of the operators O-

1 and O implies the expressions:
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The integral operator kernels of relation (15) are simply
given by the modification:

.
snss

)xu,s(K)xu,s(K);xu,s(K)xu,s(K
22

n
2

n
11

n












(16)

The 3D extension of the relation (1) is the 3D Gaussian
convolution kernel, which reads:
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Integrations have to be carried out over u, v and w. The
integral operator correspondence K-1 of equation (17) is
obtained in a similar way. For this purpose, we write the
Hermite polynomial expansion in each dimension accord-
ing to equation (4) by introducing the terms F
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below and have to be multiplied with the kernel K ac-
cording to equation (17). By that, we obtain:
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Equation (19) is also valid, if the substitution s2  s
n

2 =
n·s2 is performed. In the preceding section we have stated
arguments, why in some situations a linear combination
of Gaussian convolution kernels is required according to
equation (2). An important feature of the operators O
and O-1 and the related integral operator notation is the
class of functions, for which they are defined.

Both operators O and O-1 act on the set of func-
tions, which belong to C

This is valid even for functions like exp(x2), etc. In
contrast to these differential operators, the kernels K and
K-1 may be associated with a norm (exception: the subse-
quent point 2). In QM the situation is that the Schrödinger
differential equation formulation corresponds to O and/
or O-1, whereas the Green�s function approach is the
Feynman path integral quantization[32]. The common re-
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striction in QM is the normalization condition of the Hil-
bert space[32,34], which selects the set of permitted func-
tions in both cases. Nevertheless, for scatter problems the
path integrals provide more flexibility.

The function class of finite polynomials xn and lin-
ear combinations (a

0
 + a

1
·x +,�.,+ a

n
·xn) belong to

C(-, ), but not to L
1
(-, ) and L

2
 (-, )

The integral operators K and K-1 lead to the identical
results as O and O-1, and it is easy to verify that the opera-
tions belong to C. The integrals (22) can be evaluated
with binominal theorem. In equation (22a) O2 acts on the
substitution (s· + x)n; this procedure is easier to handle
than to use Hermite polynomials (this might be intricate).
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2n
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(21)

s
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s
1nn d)xs()(Kduu)xu,s(K



 
(22)

.d)xs()(KOduu)xu,s(K s
1n2n1  

 (22a)

The function f(x) is Lesbesque-measureable in a finite in-
terval [a  x  b] and vanishes outside. Then the integra-
tions over K·f and K-1·f exist in L

1
 and L

2
, whereas the

differentiations according to the properties of O and O-1

require smooth functions f(x) of the class C(a, b). Mea-
surement data may be refined by spline functions. This
problem occurs with regard to back convolutions of
measurement data given in digital form.

Now we finally wish discuss the problem of the per-
mitted class of functions with respect to two prominent
examples associated with the kernels K-1 and K in L

1
(-,

) and L
2
(-, ).

Keeping the relations (19 � 22a) in mind, we consider
g(x) as Gaussian function multiplied with Hermite poly-
nomials as test functions. It is known that this class is com-
plete in the Banach space L

1
 and Hilbert space L

2
[34,35]. In

order to show the calculation procedure, we restrict our-
selves at first to a single Gaussian as test function sub-
jected to a Gaussian convolution/deconvolution. Thus we
can solve this task by two different ways:

.

)/xexp()sexp(

)/xexp(O)x(g�

)/xexp()x(g

122
2dx

2d2
4
1

1221

221










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













(23)

)).s/(xexp(

du)/uexp()xu,s(K)x(g�

222

2s2
1

221












(23a)

It should be pointed out that the determination of g�(x)
via differential operator expansion requires a lot of ef-
fort, whereas the calculation of g�(x) via usual convolution
only needs the substitutions:

.xus
2s2

1122
s
1 


 (24)

.)1(;ddu
2s2

s 




(24a)

We can represent every Hermite polynomial H
n
() in terms

of ordinary polynomials by the following formulas[7,35]:

.

1H

,....)3,2,1,0n(d/)(dH)(H2)(H

,.....)7,5,3,1n;2/)1n(I(
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
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



























(25)

Therefore it is sufficient to consider for the more general
case the set of test functions:

.x)/xexp()x(g n221 
 (26)

The above substitution formulas (24 and 24a) remain un-
changed, but the expression un has to be calculated ac-
cording to

.)xs(u
n)2s2(

1nn

2s2
1n



 (27)

The evaluation of the following integral requires the
binominal theorem:

 
.

)s(;)s(

xsu

2/1222/n22n
n
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n
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
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
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(28)

By that, we obtain:

 

.

du)/uexp(xs

)xu,s(K)x,,s,(g�

du)/uexp(u)xu,s(K)x,,s,(g�

22jnjnjj
n

0j

n
j

n
1

22n1

















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









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





(29)

We use again the above substitutions (24, 24a) then the
above integral can be solved with the -function:

.)())1(1(d)exp(

5.0))1(*1(2d)exp(

2

1jj
2
12

j

0

j2j











 
(30)

The complete solution of equation (29) can be written as:
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(31)

For odd j the coefficients b
j
 are zero, if the power n is

even, whereas for odd n all coefficients with even j vanish.
We now regard the set of test functions g(x) given by

a power expansion in x multiplied with the above Gaussian,
i.e.:







n

0j

221j
j )./xexp(xa)x(g (32)

With the help of the forgoing results the general solution
of the related convolution problem the following expan-
sion can be stated:

)).s/(xexp(xc)x(g� 222
2/1)2s2(

11j
n

0j
j 




 (33)

This resulting set of functions is important with regard to
the case n   in L

2
(-, ), since c

n
 is proportional to

(n/1+1/2). Therefore the additional proportionality of
c

n
 (n  ) to a

n
  0 (n  ) has to be satisfied to save

the convergence of � and the existence of the norm re-
quested by L

2
.

Since a Gaussian test function g(x) is rapidly decreas-
ing, we anticipate that the problem of the function g(x)
has to incorporate the opposite behavior. We possess some
different toolkits to manage this task. Thus we can use
equations (4) and (13 � 13d) for the determination of G
from the test function g, which, at first, we restrict to a
single Gaussian again:

.1;gOG 
 (34)













 .du)u(g)xu,s(KOdu)u(g)xu,s(KG 21

(34a)

The question is now, which possible procedure to deter-
mine is the least intricate one. Equation (34) solves the
problem by repeated differentiations as already introduced.
The determination of G via equation (4) at the left-hand
side of equation (34a) requires a lot of effort. On the
right-hand side of equation (34a) we perform at first the
convolution with K and thereafter the operation with O2.
This procedure leads to a quite interesting access to the
inverse problem: In a rather different connection Feynman
et al[32] used with regard to integrations in path integral
quantization the formula:

)).s/()xu(exp()xu,s,(K 22
s
11 

 (35)

If  = - 1 and g given according above we obtain the
desired kernel for K-1. Thus the final result is:
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))s/(xexp(G 222
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











(36)

Thus convergence is only obtained, if 2 > s2. If  = s the
solution is the -function, and for  < s the solution is
complex-valued. With regard to Gaussian convolution/
deconvolution we can formally write:

))./s()(xexp(

))s/(xexp()x(gO

n2n2n

0n

22

2s2
11

222

2s2
11















(37)

The inverse problem of the function g(x) according to
equation (32), i.e. a Gaussian multiplied with the power
xn, follows the same principle, and we have only to per-
form the substitution  = -1 in equation (37). It is obvious
that a Gaussian convolution also converges, if s > ; the
resulting rms-value is always s� = (s2 + 2)1/2. The back
calculation also exists, since we have account for s� > s in
order to obtain the initial Gaussian given by the rms-value
.

A rather peculiar behavior shows the function;

).xexp()x(f  (38)

Thus both possible ways to calculate the Gauss-trans-
formed by either O-1 or convolution with K provide the
solution:

.)sexp()xexp(f� 22
4
1  (39)

It should be pointed out that the operator O-1 as well as
the operator O only contains derivations of even order
and continuity is always guaranteed at x = 0. Only differ-
ential operators of odd order lead to a jump at x = 0.
The deconvolution of a given f(x) can be performed with
all calculation procedures presented here in a rather simple
manner; the result is:

).sexp()xexp(du)u(f

)xu,s(Kf�O)x(fO)x(f
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

 






(40)

The resulting solution of deconvolution according to equa-
tion (40) can be subjected to a Laplace transform:

).(erfc)s/xexp(

d)sexp()xexp(

s
x22

s

0

22
4
1










(41)

A Laplace transform of the image function of equation
(39) does not exist, which is induced by the term
exp(0.25·s2·2). An extension of equation (39) by polyno-
mials can be solved with the help of the already discussed
methods:

.x)xexp()x(f n (42)
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The substitution (27) can be applied, too. The resulting
solutions are of the types (39) or (40), but, in addition,
with a sequence of powers with regard to x:

).1(;)x,(P)sexp()xexp()x(f n
22

4
1  (42a)

In a previous paper[7] we have also stated a further pos-
sible representation of the inverse kernel K-1 with some
advantages in numerical calculations of inverse problems
of one Gaussian kernel:

).xu,s(K)dx/d(
4!n

12
s)1(

)xu()xu,s(K)OO()xu()xu,s(K

n2n2

1n
n

n
n2n
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














(43)

This formula results from the identities O2·K(s, u-x) = K-

1(s,u-x) = and O·K(s,u-x) = (u-x). By taking account for
the power expansion of O2 and O and the correspond-
ing subtraction O2 � O in the above equation (43) the unit
operator�1� related to K is cancelled and a modified calcu-
lation procedure is obtained. Due to the ä-distribution the
lowest term of deconvolution is the identity of source
and image function. The integral notation of this equation
assumes the shape:

.du)xu,s(K)u()dx/d(
4!n

12
s)1( n2n2

1n
n

n
n2n 




 





(44)

If the image function  belongs to C, the use of Hermite
polynomials is not requested.

Inverse problem according to IFIE2 and LNS
method

As already pointed out the main purpose here is the
inverse problem of linear combinations of Gaussian ker-
nels. In order to reduce the effort of formula writing, we
restrict ourselves to maximal three combinations. The
operator formulation analog to equations (5 - 6) of this
convolution reads (in one dimension):

).x()]s(Oc)s(Oc
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



(45)

It is the task to determine (x), if (x) is given, which is
equivalent to determine K

g
-1. In every case, the condition

O
g
-1·O

g
 = 1 has to be satisfied.

In a previous study[5] we have made use of the op-
erator calculus to determine O

g
 and via O

g
-1 to derive the

inverse kernel K
g
-1. The operator calculus provides the

following relationship:
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

(46)

We have now to evaluate the following Lie series of the
operator function O

g
 in terms of the operators O

0
-1 and

O
1
.

If the image function  belongs to C, the use of
Hermite polynomials is not requested.

.]OcOcOc[O 11
22

1
11

1
00g
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 (47)

We use the following relation for commutative opera-
tors[32]:

.BA)1(]BA[ n1n
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n1
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





 (48)

With the help of the substitutions A = c
0
·O

0
-1 and B =c

1
·O

1
-

1 + c
2
·O

2
-1 we are able to derive the operator function O

g
,

which satisfies O
g
· = , and the related inverse kernel

K
g
-1:

.]OcOcOc[ 1
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1
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 (49)
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

(50)

In view of the following section, we introduce the abbre-
viation:

.ud)u()xu,s(K)z,y,x(f 3
0

1

00c
1 




 (51)

Function f incorporates the inhomogeneous part of the
Fredholm integral equation of second kind (IFIE2). Since
this method differs from the previous publication[5], this
section is dedicated to this task.

In order to derive an alternative method to solve the
inverse problem of a linear combination of Gaussian con-
volutions, we consider equation (50) with regard to two
kernels (the generalization to c

2 
 0 will be stated thereaf-

ter), we multiply with O
0
/c

0
 from the left-hand side. By

that, we readily obtain the desired formula, which will be
transformed to an IFIE2:

.]OO1[O 1
100c

1c
00c

1 


(52)

We should like to point out that the preceding equations
(46 � 52) result from a power expansion of the expres-
sion [1+ (c

0
/c

1
)·O

0
·O

1
-1]-1 in terms of a Lee series in or-

der to resolve equation (52) with regard to . However,
equation (52) can immediately be transformed to an inte-
gral equation by the principles elaborated above, i.e. the
left-hand side implies a deconvolution term of the opera-
tor O

0
 applied to ö, whereas the operator O

0
·O

1
-1 implies

a convolution term K
f
 (s

1
 > s

0
)
 
applied to :
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(53)

With the substitution  = - (c
1
/c

0
) equation (53) repre-

sents the usual notation of an IFIE2; the inhomogeneous
term f results from a deconvolution procedure and K

f
(,

u � x) is a normalized Gaussian kernel with regard to the
parameter  in equation (53). The inverse problem is
solved by finding the solution of equation (53), which
can be done best with the help of LNS, i.e. the iterated
kernel K

f(n)
 has to be determined from the above kernel

K
f
(, u-x). The nth � iterated kernel is calculated by the

procedure:
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(54)

The resolving kernel K
res

 is given by:
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The solution of the integral equation becomes:

  .ud)u(f),xu(K)x( 3
res



(56)

In practical applications, we have to be aware of a finite
limit L in equation (55), and L   cannot be carried out.
The evaluation of the iterated terms K

f(n)
 is rather simple,

since K
f
 is the normalized Gaussian kernel. Thus K

f(1)
 is

the normalized Gaussian kernel itself. K
f(2)

 results from a
composite convolution:
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In equation (57) we have introduced the �helping formula�
K

f(h)
, which allows us to determine K

f(3)
, K

f(4)
�, by ap-

plying equation (57) iteratively. Thus by the fixation 2 =
22 we obtain via equation (57) K

f(3)
 = K

f
(32). In the

same fashion K
f(4)

 is determined by K
f
(42) and K

f(n)
 by

K
f
(n2). K

f(n)
 appears in every order of the calculation

procedure with the help LNS.
As already mentioned, rapid convergence is reached,

if c
0
 >> c

1 
and the ratio  is small. Then the powers of 

become correspondingly much smaller. Thus for c
0
 = 0.9

and c
1
 = 0.1 we obtain  = - 0.11111 (2 = 0.01234),

whereas for c
0
 = 0.55 and c

1
 = 0.45 we obtain  = -

0.8181 and 2 = 0.66942. There is also a principal differ-
ence between the two calculation procedures with regard
to the parameters s

0
 and s

1
. The application of the LNS

method only requires 2 > 0, i.e. s
1
2 > s

0
2, while the previ-

ous method[5] only exists, if s
1
2 > 2s

0
2. A further differ-

ence between the two methods refers to the inverse ker-
nel K

g
-1, which has to be determined in the first method

to calculate the source function  from a given image
function , whereas via LNS method we can directly cal-
culate the source function  from a given image function
 without determination of the inverse kernel. The exten-
sion to a linear combination of three Gaussian convolu-
tion kernels leads with regard to the inverse problem to
the following IFIE2:

.

ss;ss
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(59)

In order to evaluate equation (59) by equation (54), we
write this equation in the form:
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For the evaluation of the inverse kernel we need to calcu-
late K

f(n)
:
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(61)

It is evident that K
f(n) 

has to contain the terms K
f
(n·

1
, u-

x) and n ·K
f
(n·

2
, u-x), but the binominal theorem also

provides mixed products, and by evaluation of equation
(61) K

f(n)
 assumes the shape:

  ).xu,j)jn((K)xu(K 2
2

2
1f

n
j

n

0j

j
)n(f
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 


(62)

It must be pointed out that now equation (55) has to be
evaluated with the help of equation (61). With regard to
convergence aspects in the above cases according to equa-
tions (57 � 61) it is obvious that convergence is fast, if c

0

satisfies c
0
 >> c

1
 or c

0
 >> c

2
, i.e. the leading term refers to

c
0
 and the additional contributions only represent (small)

long-range tails. Please note that the LNS method is also
applicable, if c

1
 < 0 (c

0
 + c

1
 + c

2
 = 1) is assumed. Ex-

amples for this case will be presented in the section 3.

Theoretical aspects of Bethe-Bloch equation (BBE)

The application of the Bethe-Bloch equation (BBE)
for the determination of the electronic stopping power is
established for the passage of electrons and protons
through homogeneous media. A particular importance of
BBE appears in Monte-Carlo calculations to simulate be-
havior of charged projectile particles along the track. This
equation reads:

.

m2/eq8)A/Z(K

]avaaa

)1(ln)E/vm2(ln[)v/K(dz/)z(dE
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2
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(63)

E
I
 is the atomic ionization energy, weighted over all pos-

sible transition probabilities of atomic/molecular shells, 
= /c, q denotes the charge number of the projectile (e.g.
proton, carbon ion), and Z,  and A

N
 refer to the charge,

density and relative mass number of the absorbing me-
dium. According to ICRU49[41] we have to put a

0
 = -1.

The meaning of the correction terms a
shell

, a
Barkas

, a
0
 and

a
Bloch

 is explained in[38-43]. In this study we mainly consider
the basic aspects of the Barkas effect. A theory of this
effect has been developed in[44].

The Barkas effect represents a correction of BBE due
to the electron capture of the positively charged protons
at lower energies in the domain of the Bragg peak and
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behind leading to a slightly increased range R
csda

, whereas
the negatively charged anti-protons cannot capture elec-
trons from the environmental electrons. Therefore their
range is slightly smaller. With regard to protons this kind
of correction works, i.e. the charge q2 = 1 is assumed
along the total proton track, whereas for charged ions
such as He or C6 is appears to be insufficient to keep the
nuclear charge constant along the total track and to restrict
the electron capture only to the small Barkas correction[45].
This means that all positively charged projectile particles
stand in permanent exchange of energy E and charge q
with environment, and, as a consequence, q2 is a function
of the actual residual energy, i.e. q2 = q2(E), and only for
E = E

0
 (initial energy) q2 = q

0
2 is valid. A correct modifi-

cation of BBE by accounting for q2(E) due to electron
capture makes the Barkas correction superfluous.

A further critical aspect of BBE, which leads to a
modification by accounting for q2(E) is the range R

csda
 of

the electronic stopping power. Thus a naïve application
of BBE would lead to the conclusion that a carbon ion
would require the initial energy per nucleon E

0
 (carbon

ion) = 3 x E
0
(proton), since the square of the carbon

charge amounts to 36 and the nuclear mass unit is 12 x
nuclear mass unit of the proton. However, the ratio is not
3 to obtain the same range R

csda
, but about 25/12. The

Monte-Carlo code GEANT4 assumes an average charge
q

Average
 = 5.06 for the simulations of the carbon tracks.

This is, however, not satisfactory, since electron capture is
a dynamical process. Therefore the range of charged par-
ticles has been subjected to many studies due to the in-
creasing importance of carbon ions in radiotherapy[41-51].
It is also possible to substitute the electron mass m by the
reduced mass m  . However, this leads for protons to
a rather small correction (i.e., less than 0.1 % for protons).
For complex systems E

I
 and some other contributions

like a
shell 

and a
Barkas

 can only be approximately calculated
by simple quantum-mechanical models (e.g., harmonic os-
cillator); the latter terms are often omitted and E

I 
is treated

as a fitting parameter, but different values are proposed
and used[41]. The restriction to the logarithmic term leads
to severe problems, if either v  0 or 2m

 
v2 /E

I
  1. It

should be added that a correct treatment of the electron
capture removes the singularity of positively charged ions,
since q2(E)  0, if the residual energy E assumes zero.

In previous publications[6,8,62] we have presented an
analytical integration of BBE, which is the physical base in
the transport of protons and other charged particles such
as heavy carbon ions.

In order to obtain the integration of BBE, we start
with the logarithmic term and perform the substitutions:

).2/uexp()/1(E;ME/m4;M/E2v III
2  (64)

With the help of substitution (and without any correction

terms), BBE leads to the integration:
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The boundary conditions of the integral are:
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The general solution is given by the Euler exponential in-
tegral function Ei() with P.V. = principal value:
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(67)

Some details of Ei() and its power expansions can be
found in[35]. The critical case  = 0 results from E

critical
 =

ME
I
/4m (for water with E

I
 = 75.1 eV, the critical energy

E
critical

 amounts to 34.474 keV; for Pb with E
I
  800 eV to

about 0.4 MeV). Since the logarithmic term derived by
Bethe implies the Born approximation, valid only if the
transferred energy E

transfer
 >> the energy of shell transi-

tions, the above corrections, exempting the Bloch correc-
tion, play a significant role in the environment of the Bragg
peak, and the terms a

0,
 a

shell
, and a

Barkas
 remove the singu-

larity. However, the integration procedure according to
the above equation (67) remains valid, if we account for
the correction terms. With respect to numerical integra-
tions (Monte Carlo), we note that, in the environment of
E = E

critical
, the logarithmic term may become crucial (lead-

ing to overflows); rigorous cutoffs circumvent the prob-
lem. Therefore, the shell corrections are an important fea-
ture for low proton energies.

The result of the integration yields a power expan-
sion for R

CSDA
 in terms of E

0
:

).N(EER n
0

N

1n

pn
InZ

NA1
CSDA  


 (68)

The coefficients á
n
 are determined by the integration pro-

cedure and only depend on the parameters of the BBE.
For applications to therapeutic protons, i.e., E

0
 < 300 MeV,

a restriction to N = 4 provides excellent results (Figure 1).
For water, we have to take E

I
 = 75.1 eV, Z/A

N
 = 10/18,

 = 1 g/cm3; formula (68) becomes:

)N(EaR n
0

N

1n
nCSDA 



(69)

The values of the parameters of Formulas with restric-
tion to N = 4 are displayed in TABLES 1 and 2.

TABLE 1 : Parameter values for equation (68) if E
0
 is in MeV,

E
I
 in eV and R

CSDA
 in cm.

á1 á2 á3 á4 p1 p2 p3 p4 

6.8469?10-4 2.26769?10-4 -2.4610?10-7 1.4275?10-10 0.4002 0.1594 0.2326 0.3264 
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The determination of A
N
 and Z is not a problem in

case of atoms or molecules, where weight factors can be
introduced according to the Bragg rule; for tissue hetero-
geneities, it is already a difficult task. Much more difficult
is the accurate determination of E

I
, which results from

transition probabilities of all atomic/molecular states to
the continuum (-electrons). Thus with regard to stop-
ping powers of protons in different media according to[41],
there are sometimes different values of E

I
 proposed (e.g.,

for Pb: E
I
 = 820 eV and E

I
 = 779 eV). If we use the

average (i.e., E
I
 = 800.5 eV), the above formula provides

a mean standard deviation of 0.27 % referred to stop-
ping-power data in[41], whereas for E

I
 = 820 eV or E

I
 =

779 eV we obtain 0.35 % - 0.4 %. If we apply the above
formula to data of other elements listed in[41], the mean
standard deviations also amount to about 0.2 % - 0.4 %.

Instead of the usual power expansion (69), we can
represent all integrals in terms of Gompertz-type func-
tions multiplied with a single exponential function by col-
lection of all exponential functions obtained by equations
(63 � 67) and the substitution 

I
E = exp(-u/2). The

Gompertz-function is defined by:

.
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(70)

Above formulas can also be used for the calculation
of the residual distance R

CSDA
 � z, relating to the residual

energy E(z); we have only to perform the substitutions
R

CSDA
  R

CSDA
 � z and E

0
  E(z) in these formulas. In

various problems, the determination of E
0
 or E(z) as a

function of R
CSDA

 or R
CSDA

 � z is an essential task. The
power expansion implies again a corresponding series E

0

= E
0
(R

CSDA
) in terms of powers:
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(71)

The coefficients c
k
 are calculated by a recursive proce-

dure; we have given the first three terms in formula (71).
Due to the small value of a

1
 = 6.8469��10-4, this series is

ill-posed, since there is no possibility to break off the ex-
pansion; it is divergent and the signs of the coefficients c

k

are alternating, see[35]. The inversion procedure of this equa-
tion leads to the formula (see e.g.[6]):
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(72)

By extending formula (72) to different media the inverse
formula of equation (70a) becomes:
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(73)

For therapeutic protons, a very high precision is obtained
by the restriction to N = 5 (TABLE 4 and Figure 4).

TABLE 2 : Parameter values for equation (69), if E
0
 is in

MeV, E
I
 in eV and R

CSDA
 in cm.

a1 a2 a3 a4 

6.94656?10-3 8.13116?10-4 -1.21068?10-6 1.053?10-9 

Figure 1 : Comparison data in[41] of proton R
CSDA

 range (up to
300 MeV) in water and the fourth-degree polynomial (equation
69). The average deviation amounts to 0.0013 MeV.

By inserting the integration boundaries u = 2ln4mE
0
/

(ME
I
), i.e., E = E

0
 and u   (E = 0), the integration

leads to a sequence of exponential functions; the power
expansion is replaced by:

).N()]Egexp(bb(1[EaR
N

1k
0kkk01CSDA  



(70a)

For therapeutic protons, the restriction to N = 2 provides
the same accuracy (Figure 2) as formula (69); the param-
eters are given in TABLE 3 (a

1
 is the same as in TABLE 2).

In the following, we shall verify that the latter for-
mula provides some advantages with respect to the inver-
sion E

0
 = E

0
(R

CSDA
).

TABLE 3 : Parameters of Formula (70a); b
1
 and b

2
 are

dimensionless; g
1
 and g

2
 are given in MeV-1.

b1 b2 g1 g2 
15.14450027 29.84400076 0.001260021 0.003260031 

Figure 2 : R
CSDA

 calculation - comparison between a fourth-
degree polynomial (equation (69)) and two exponential
functions (equation (70a)).
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The residual energy E(z), appearing in equation (73),
is the desired analytical base for all calculations of stop-
ping power and comparisons with GEANT4. The stop-
ping power is determined by dE(z)/dz and yields the fol-
lowing expression:

.

)]zR(exp[)zR(c)z(E

)N()z(E)zR/()z(E

dz/)z(dE)z(S
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 (74)

The aforementioned restriction to N = 5 is certainly ex-
tended to equation which can be considered as a repre-
sentation of the BBE in terms of the residual energy E(z).
Due to the low-energy corrections (a

0
, a

shell
, a

Barkas
) the

energy-transfer function dE(z)/dz remains finite for all z

A change from the interacting reference medium wa-
ter to any other medium can be carried out by the calcula-
tion of R

CSDA
, where the substitutions have to be per-

formed:

.)Z/A()A/Z(

)water(R)medium(R

mediumNwaterN

CSDACSDA




(75)

It is also possible to apply formula (75) in a stepwise
manner (e.g., voxels of CT). This procedure will not be
discussed here, since it requires a correspondence be-
tween (Z/A

N
)
Medium

 and information provided by CT.
With regard to heterogeneous media with only CT data
as basis information the application of BBE is a more
difficult task.

Qualitative properties of the electron transfer de-
scribed by BBE and electron capture

According to BBE the energy spectrum of produced
by carbon ions should be the same as that produced by
protons, and the only difference between protons and
carbon ions should be the intensity of the released colli-
sion electrons, i.e. the amplification factor should be 36
for carbon ions. It is well-known that this property is not
valid for the following reasons: The average ionization
energy for carbon ions turned out to be E

I
 = 80 eV in-

Formula (72) is also suggested by a plot S(R
CSDA

) =
E

0
(R

CSDA
)/R

CSDA
 according to equation (72). This plot is

shown in Figure 3 and gives rise for an expansion of

S(R
CSDA

) in terms of exponential functions. This plot is
obtained by an interchange of the plot E

0
 versus R

CSDA

and a calculation according to the above relation.

TABLE 4 : Parameters of the inversion formula (73) with N = 5 (dimension of c
k
: cm/MeV, 

k
: cm-1).

c1 c2 c3 c4 c5 ë1-1 ë2-1 ë3-1 ë4-1 ë5-1 

96.63872 25.0472 8.80745 4.19001 9.2732 0.0975 1.24999 5.7001 10.6501 106.72784 

P1 P2 P3 P4 P5 q1 q2 q3 q4 q5 

-0.1619 -0.0482 -0.0778 0.0847 -0.0221 0.4525 0.195 0.2125 0.06 0.0892 

Figure 3 : Plot S(R
CSDA

) = E
0
/R

CSDA
 provides a justification of

the representation of S by exponential functions.

One way to obtain the inversion Formula is to find
S(R

CSDA
) by a sum of exponential functions with the help

of a fitting procedure. Thus it turned out that the restric-
tion to five exponential functions is absolutely sufficient
and yields a very high accuracy. A more rigorous way
(mathematically) has been described in the LR of[62].

Figure 4 : Test of the inverse Formula (40) E
0
 = E

0
(R

CSDA
) by

five exponential functions. The mean deviation amounts to
0.11 MeV. The plot results from Figure 1.

(i.e., 0  z  R
CSDA

). This is, for instance, not true for the
corresponding results according to Formulas (73 � 74) at
z = R

CSDA
. The calculation of E(z) and dE/dz according

to equations, referred to as LET, is presented in Figure 5.
The figure shows that, within the framework of CSDA,
the LET of protons is rather small, except at the distal
end of the proton track.

Figure 5 : E(z) and dE(z)/dz as a function of z (LET based on
CSDA); energy straggling is omitted.



.JOPA, 1(1) 2012

FP  42

Full Paper

stead of E
I
 = 75 eV for protons[41,30], and[30] is based on

investigations of some other authors[47,56,64,65]. The second
reason is the electron capture of the carbon ion. Thus a
carbon ion can capture a free electron, which has been
excited immediately before. Figure 7 shows this effect.
However, only electrons with a slow relative velocity to
the carbon ion can account for this process (v

relative
 about

0). Since the transition time of the capture electron to a
lower atomic state of the carbon ion is less than 10-10 sec
with a simultaneous emission of light (UV or visible), it is
possible that the captured electrons goes lost again, and
only a stripping effect occurs for a short time. If the C6+

ions has been finally transferred to a stable C5+ ion, the
identical process can be repeated until at the end track a
neutral carbon atom is obtained having only a thermal
energy. In the environment of the Bragg peak the effec-
tive charge of the carbon ion is about the same that of a
proton, namely +e

0
. Since the electron capture can only

occur for electrons of which the relative velocity is slow,
the upper energy limit of the energy exchange E

ex
 is the

Fermi edge E
F
, which is for an electron gas not higher

than the thermal energy k
B
T. If the charge of carbon ion

amounts to +6·e
0
 and, at least, > +e

0
, the environmental

atomic electrons suffer lowering of the energy levels due
to the Coulomb interaction, which leads to an increase of
E

I
. Therefore the stated value of E

I
 = 80 eV represents an

average value produced the fast carbon ion starting with
+6·e

0
 and ending with an uncharged, neutral carbon atom.

before we can account for the latter problem we have to
consider the related mathematical tools.

In general, if H represents the Hamiltonian (either non-
relativistic or relativistic) and f(H) an operator functions,
then for continuous operators H the connection holds:

.
)E(f)H(f

EH



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(76)

At first we apply this relation in the non-relativistic case to
derive the Gaussian convolution for the description of
energy straggling. If the stopping power S(z) = dE(z)/dz
of protons is calculated by BBE or by phenomenological
equations[6] based on classical energy dissipation, then the
energy fluctuations are usually accounted for by:

.du)zu,(K)u(S)z(S Rcsda  (77)

This kernel may either be established by non-relativistic
transport theory (Boltzmann equation) or, as we prefer
here, by a quantum statistical derivation. Let  be a distri-
bution function and  a source function, mutually con-
nected by the operator F

H
 (operator notation of a ca-

nonical ensemble):
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An exchange Hamiltonian H couples the source field 
(proton fluence) with an environmental field  by F

H
, due

to the interaction with electrons:
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It must be noted that the operator equation (79) was for-
mally introduced[5] to obtain a Gaussian convolution as
Green�s function and to derive the inverse convolution.
F

H
 may formally be expanded in the same fashion as the

usual exponential function exp();  may either be a real
or complex number. This expansion is referred to as Lie
series of an operator function. Only in the thermal limit
(equilibrium), can we write E

ex
 = k

B
T, where k

B
 is the

Boltzmann constant and T is the temperature. This equa-
tion can be solved by the spectral theorem provided by
the discipline �functional analysis�:
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Figure 6 : Excitation of an atomic electron by the collision
interaction of a fast carbon ion with an atomic electron and
the reversal process of the electron capture.

Boltzmann operator equation and Gaussian convo-
lution

In the following it is the task to obtain a quantum-
statistical description of electron capture and stripping of
electrons, i.e. those electrons which reduce the effective charge
of the carbon ion for a short time and go lost before a
transition to a stable atomic state of carbon can occur. For
this purpose we consider the quantum statistical energy ex-
change E

ex
 between projectile particle such as proton, He

ion or carbon ion. The related mathematical procedure can
be used to describe processes like energy straggling, lateral
scatter and energy/charge exchange between projectile ion
and released electrons below the Fermi edge E

F
. However,
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The kernel K according to equation (80) may either be
established by non-relativistic transport theory (Boltzmann
equation) or, as we prefer here, by a quantum statistical
derivation. It is a noteworthy result[5,6] that a quantum sto-
chastic partition function leads to a Gaussian kernel as a
Green�s function, which results from a Boltzmann distri-
bution function and a non-relativistic exchange Hamilto-
nian H. An operator formulation of a canonical ensemble
is obtained by the following way: let  be a distribution
(or output/image) function and  a source function, which
are mutually connected by the operator. In a 3D version,
linear combinations of K(, u � x) and the inverse kernel
K-1 are also used in scatter problems of photons[5]. As an
example, we consider the Schrödinger equation of a free
electron transferring energy from the projectile to the en-
vironment and obeying a Boltzmann distribution function
f(H) =exp(-H/E

ex
):

.H m2

2
  (81)

The above relation provides:
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In the case of thermal equilibrium, we can replace the
exchange energy E

ex
 by k

B
T.

Dirac equation, Fermi-Dirac statistics and their con-
sequences

With regard to our task the Dirac equation to de-
scribe the particle motion is an adequate starting-point:
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(83)

Please note that in the notation of equation (83) ó
  refers

to the Pauli spin matrices (this should not be confused
with the rms-value  of a Gaussian distribution function).
In position representation we obtain:

 Di
c2 E)mc(


 (84)

According[6,63] we can write:

.mc/E21mcE 2
Pauli

2
D  (85)

E
Pauli

 is the related energy value resulting from the Pauli
equation.

From the view-point of the many-particle-problem
Fermi-Dirac statistics is adequate mean by the notation of
operator functions:

.)H(d)H�(f Ds]exE/)FEDH[(exp1
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 (86)

E
F
 represents the energy of the Fermi edge (usually some

eV) and d
s
 the density of states of the Hamiltonian H

D
.
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We iterate equation (87) n-times and obtain:
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By that, the above expression assumes the shape:
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Since 1/cosh() = sech() holds, we evaluate equation (89)
using an expansion resulting from Euler numbers E

l
[35].

Convergence is only established for   /2. Therefore
we have derived a modified expansion which provides
convergence for arbitrary arguments of [6]:
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The spectral theorem of functional analysis provides:
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By performing all integrations we obtain the distribution
functions in the energy space (equation (91)) and position
space (equation (91a)):
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According to Bohr�s formalism[38] the formula for energy
straggling (or fluctuation) S

F
 is given by:
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The fluctuation parameter 
E
 can be best determined us-

ing the method in[38]. Furthermore we can verify the con-
nection between E

Average
 in the theory of Bohr and the

Fermi edge energy E
F
, since E

Average
 results from the re-

peated iteration of E
F
.
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As in a previous section we use the definition S(z) =
dE(z)/dz according to BBE. Since S(z) is proportional to
q2, the following equation (95) provides q2(E) = q

0
2·S

E
.
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The transition to the integration (continuum approach up
to second order) provides:
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An essential result is that we are able to modify the previ-
ous formula between initial energy E

0
 and the range R

csda
:
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Monte-Carlo methods

With regard to problems of image processing (e.g.
blurred images due to scatter effects) we have carried out
Monte-Carlo calculations with the EGSnrc code[31]. This
code has been applied most widely to various tasks in medi-
cal radiation physics. We have performed Monte Carlo
calculations using the EGSnrc code with regard to prob-
lems of image processing in the MV- and KV-domain. The
transport of charged particles and the related nuclear reac-
tions have been determined with the aid of GEANT4[42].

Image processing in the MV-domain

Absorption � and attenuation curves, transverse pro-
files in various depths for the simulation of radiation re-
sponses of a detector array (portal imaging) have been
determined for field sizes 0.48 x 0.48 cm2 up to 20 x 20
cm2. Previous results have been used with regard to the
energy spectrum of 6 MV[7].

Image processing in the KV-domain

We have determined the energy spectrum of 100 KV


E

2 contains as a factor the important magnitude E
max

,
that is, the maximum energy transfer from the proton to
an environmental electron; it is given by E

max
 = 2mv2/(1-

2). In a non-relativistic approach, we get E
max

 = 2mv2.
E

max
 can be represented in terms of the energy E, and,

for the integrations to be performed, we recall the rela-
tion E = E(z) according to formula (93):

).MeVinE(Es)keVin(E k
4

1k
kmax  



(94)

Figure 7 : Calculation of E
max

 according to equation (94). The
straight line refers to the non-relativistic limit.

However, we should like to point out that according
to the preceding section this determination is only valid
for protons and cannot be applied to heavy ions without
a change of the parameters.

TABLE 5 : The parameters s
k
 for the calculation of E

max

(formula (94)).

s1 s2 s3 s4 

2.176519870758 0.001175000049 -0.000000045000 0.0000000000348 

Please note that the parameters have slightly to be modi-
fied  = 0.0069465598;  = 0.0008132157;  = -
0.00000121069;  = 0.000000001051.

If N =1 and q
eff

 = 0.995 the above formula is valid
for protons. However, it turns out that the determination
of the effective charge q

eff
 depends on the initial energy

E
0
. This will be verified in a following section.

The subsequent Figure 8 indicates the wide tool re-
sulting from linear combinations of shifted Gaussian ker-
nels (the signs of the coefficient c

1
 may considerably, but

K
g
 > 0 must still hold). Equations (91 � 91b) can be

approximated by a linear combination of three kernels
with different shift values and rms �values. Then it is
possible to subject the corresponding deconvolutions
based on the LNS-procedure to determine q2(E) from
measured Bragg curves.

Figure 8 : Linear combination of three Gaussian kernels with
different shifts to describe asymmetric processes like electron
capture or Landau tails in energy straggling.
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and 125 KV photons of CT/CBCT and the absorption/
scatter behavior in some media of relevance, e.g. water-
equivalent and phantoms with different material densities
(lung, bone). A main purpose was the connection between
Hounsfield units and the scatter parameters required for
the 2D scatter kernel:

.)yv,xu,s(Kc)yv,xu,s(KcK 111000g  (98)

In general, the scatter parameters s
0
 and s

1
 depend (in-

crease) on the depth z, and this is the way to treat the
depth-dependent scatter of a pencil beam. The correspon-
dence between the Hounsfield value and electron density
 is well-established, excepted metallic implants. The scal-
ing of the scatter parameters s

0
 and s

1
 can be scaled ac-

cording to the electron density , if the scatter parameters
are known for water. A possible, but rather intricate way
to eliminate scatter in CT/CBCT images would be ob-
tained by the deconvolution of photon pencil beams, i.e.
the methods of radiation therapy planning[7] are trans-
formed to image processing.

Therefore, we extend here a previously developed
method of the deconvolution according to the volume[5]

to the parallel solution procedure of LNS presented in
this study.

Extension of the LNS method to volume-dependent
scatter functions s, s

0
, s

1
 and s

2

We have already pointed out that the scatter param-
eters s, s

0
, s

1
 (and eventually s

2
) have by no means to be

constant values. Thus, in the pencil beam algorithms[6-8]

these parameters are not constant, but they represent scat-
ter functions depending on the depth z. However, this
restriction is, in general, not necessary in all formulas we
have developed in this study.

The differential operator formulations of one and/
or more than one kernel expressed by O-1, O, O

g
-1, O

g
,

permit a dependence of all parameters s, s
0
, s

1
, s

2
 and

related composite terms like , 
1
, 

2
 of all three di-

mension magnitudes x, y, z, since the differential opera-
tors in the exponential functions are not influenced by
this property. This property is also true with regard to all
integral operator formulations (including IFIE2 and LNS
procedure), where the half-width parameters do not af-
fect the integration variables. In all our applications, we
do not account for neither complex-valued Gaussian
kernel functions nor source/image functions  and .
We restrict ourselves to positively definite source/image
functions. Thus we have previously used Fourier expan-
sions of the scatter functions[5], and the same procedures
are now applied to some cases of the LNS calculations
(image problems):
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Equation (99) is of particular importance, if the source
function  is connected to a dose distribution function D
without scatter, i.e. it only contains absorption but not
attenuation, whereas the image function  represents a
blurred dose distribution which also contains scatter.

Measurement data and calculations via therapy plan-
ning system

In this communication we have used the algorithm
AAA[7] implemented in the planning system EclipseR

(Varian, installation in the Klinikum Frankfurt/Oder). The
radiation leaving a phantom has been recorded with the
IviewR (Synergy, Elekta). Details of CT/CBCT measure-
ments have been previously given[5]. A stereotactic pho-
ton beam has been recorded with a Novalis accelerator
(Varian); proton beam data have been made available from
the Harvard cyclotron (HCL), Boston.

With regard to measurement data the problem of
noise is not significant in high dose radiotherapy (protons,
photons), since data fluctuations are extremely small, tem-
perature and pressure corrections have to be accounted
for, and the detected raw data are always refined by spe-
cific procedures of smoothening. Thus these data can
readily compared to theoretical calculations. In the case of
image processing carried out at lower doses (CT, CBCT)
the situation is not quite as favorable as in radiotherapy,
and smoothening plays a more significant role to remove
noise produced by fluctuations in the detector system.
These fluctuations may result from local temperature in-
fluences and/or the memory of detectors due to preced-
ing signal sequences. However, these data are also refined
by appropriate software, which is already accounted for
by the vendors.

APPLICATIONS

Since we are interested in calculation results and the
reliability obtained by the LNS expansion, the following
section accounts for those examples we have already dis-
cussed in detail by published methods[5]. For brevity, we
select some cases; further examples can be obtained upon
request. By that, the algorithms concerning the inverse
problem of linear combinations of Gaussian convolu-
tion kernels will gain more flexibility. A further application
is the formulation of electron capture by an asymmetric
kernel based on Fermi-Dirac statistics.

Comparison of LNS procedure with a previously
published method

In order to check the reliability and convergence prop-
erties of the LNS procedure, we perform at first applica-
tions we have previously obtained by the calculation of
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K
g
-1. In both calculation procedures, we need the

deconvolution kernel K
0
-1(s

0
, u-x), which has to be appro-

priately extended, if necessary, to more than one spatial
dimension. Since K

0
-1 represents itself an infinite expan-

sion, we denote here the finite break off value by N we
have used in a corresponding calculation. It has to be
pointed out that for a reasonable comparison of the two
different inverse procedures N has to be identical in both
cases. The finite break off value of the sequence of
Gaussian convolution terms according to a previous
study[5] will be denoted by M, and the related value of the
LNS procedure according to equations (53 -62) by L.
The best test of the derived deconvolution formulas can
be obtained by corresponding convolutions of some
model cases and back calculations via LNS procedure.
Since the deconvolution formulas represent order-by-or-
der calculations, a principal aim of the tests was to specify
the required order and precision to obtain the source func-
tion (origin) in a satisfactory way.

The principal problems of deconvolutions and pos-
sible pitfalls can be verified either by the Figures 9-10 or
by Figures 15-17 in section 3.2. These figures show that
rather different sources (e.g. three adjacent boxes or boxes
with an empty space between them) with different rms
values s, s

0
, s

1
 and s

2
 lead to similar image functions. By

that, we have to verify that the underlying rms values have
to be known rather exactly from measurement data or by
Monte-Carlo calculations to prevent artifacts by the
deconvolution procedures. Only due to the very accurate
knowledge of the subjected convolution parameters it is
possible that the inverse procedure also reliable works with
sufficient accuracy. The so-called �try-and-error� method
with certain start values for the rms parameters s, s

0
, s

1
, s

2

and coefficients c
0
, c

1
, c

2
 might lead to artifacts. The model

cases according to Figures 9-10 and 15-17 may also have
a practical importance, since the boxes represent finite step
functions, where the L

1
-integrability is rather favorable to

handle, and the deconvolution via Fourier transforms and
Wiener filters leads to diverging jumps at the edges (this is
a typical ill-posed problem[22]). In radiotherapy the fluence
determination/modulation and optimization within finite
intervals (grid size) represents an important feature in IMRT
(or Rapid Arc) therapy. On the other side, only by rescaling
of the underlying geometry we are directly guided to these
aspects and novel treatment schemes of modern radio-
therapy[23], which appear to lead to a better protection of
critical organs and to fulfill the corresponding constraints
of radiobiology and radiation protection. The following examples (Figures 11-15) represent a

modification of a previously considered image
deconvolution[5] of a test phantom (CT image), whereas
we now consider the same phantom configuration in con-
nection with a CBCT image. The test phantom (Figure
11) consists of an inner cylinder with a diameter of 4 cm
(HU = 700) embedded by an outer tube containing wa-

TABLE 6 : Convolution/deconvolution parameters of Fig-
ures 9-10.

Figures c0 c1 c2 s0/cm s1/cm s2/cm L M N 

9 0.90 -0.38 0.48 0.40 0.82 1.50 11 10 10 

10 0.90 -0.38 0.48 0.44 0.78 1.55 10 11 10 

The parameters of TABLE 6 refer to that case, where
we have accounted for a linear combination of three
Gaussian convolution kernels, but with c

0
 and c

2
 > 0 and

c
1
 < 0 (c

0
 + c

1
 + c

2
 = 1). This case is also supported by the

LNS procedure and increases the flexibility of convolu-
tion/deconvolution applications without having to con-
sider the Mexican hat problem with c

1
 < 0 and c

2
 = 0. We

should recall that in spite of the modification with c
1
 < 0

the condition K
g
  0 has to be satisfied. This property

certainly represents a constraint at the choice of c
1
 and s

1
.

Figure 9 : Convolution and deconvolution of three boxes (box
length: 1 cm, space between them: 0.5 cm).

In contrast to Figure 9 the distance between the three
boxes is increased in Figure 10; the relative amplitude be-
tween the boxes obtained after convolution reflects this
property.

This property represents an essential restriction with
regard to the choice of the scatter parameters and coeffi-
cients of the linear combinations c

0
, c

1
 and c

2
. The nega-

tive value of c
1
 yields the rapid decrease of the relative

amplitude at the outermost boxes. The relative amplitude
is not yet specified; it might refer to a fluence or dose
distribution or to a signal strength in some other kinds of
applications, where convolutions and their inverse prob-
lems are applied (e.g. image processing based on mag-
netic resonance tomography).

Figure 10 : Convolution/deconvolution of three boxes (box
lengths: 1 cm (right-hand side), 0.8 cm (central part), 0.5 cm
(left-hand side); spaces: 1.6 cm (right-hand side), 2.35 cm
(left-hand side)).
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ter-equivalent material (HU = 0); the total phantom diam-
eter amounts to 16 cm. The impinging photon beam with
140 KV now is a broad beam (CBCT), which can be
calculated from a Gaussian beamlet with s

0
 = 0.87 mm,

whereas in the previous study we have used a Gaussian
beamlet with 125 KV (scanning technique with CT, s

0
 =

0.5 mm). Please note that the removal of noise of detec-
tors recording images (�raw data�) has been performed by
a smoothing function established in the algorithm (Figures
11-15, 19-24). The application of a deconvolution proce-
dure as previously used[5] or in this study via LNS requires
the determination of the scatter in the phantom. The en-
ergy spectrum of the incident photon beam has been de-
termined by Monte-Carlo calculations[31]. In both cases,
CT and CBCT, a detector array records the attenuation
radiation behind the phantom. The valid scatter functions
for the CT imaging have already been presented[5], and
the proportionality between the electron density 

el
(x, y, z)

and the scatter functions s
0
(x, y, z), s

1
 (x, y, z), and s

2
(x, y, z)

holds (c
0
, c

1
, c

2
 remain unchanged). However, the end val-

ues of the scatter functions at the detector plane are not
valid. The scaling transformation has to be corrected by
the detector influence and the initial scatter of the photon
beam at the impinging position:

).z,y,x(s)z,y,x(s eli,00  (100)

).z,y,x(s)z,y,x(s eli11  (100a)

).z,y,x(s)z,y,x(s eli,22  (100b)

.cm72.2s;56.0s;cm42.0s i2i1i0  (100c)

.25.0c;12.0c;87.0c 210  (100d)

The number of linear combinations of kernels (two ker-
nels for CT and three kernels for CBCT) is the principle
difference between the parameters according equations
(100 � 100d) valid for CBCT and those parameters valid
for CT. Moreover, s

1i
 does not satisfy s

1i
> 2·s

0i
; there-

Equations (100 � 100d), which determines the space-
depending scatter function useful for deconvolutions of
the complete volume, have to be modified in the CBCT
case:

.Cf)z,y,x(s)z,y,x(s eli,00  (100e)

.Cf)z,y,x(s)z,y,x(s eli11  (100f)

.Cf)z,y,x(s)z,y,x(s eli,22  (100g)

Figure 11 : Phantom: water-equivalent material/bone. Inner
cylinder: bone with HU = 700, outer part: water-equivalent
material with HU = 0. In a later application the bone mate-
rial with HU = 700 will be replaced by air and serves as a test
phantom for a portal imager of a linear accelerator.

fore the use of the previous algorithm is difficult to handle;
a detailed treatment of this situation has been previously
given[5]. The uncorrected electron density functions result
from the Fourier expansion (99), where the scatter influ-
ence is accounted for. We have now to perform the task
that the deconvolution of the 3D image at the central ray
should provide the same result as one image of CT.

In the case of CT image processing, the cylinder is
scanned along the cylinder axis, whereas in CBCT image
processing the image is produced via one rotation by di-
vergent broad beam. The problem of scanning by CBCT
is certainly an increased contribution of scatter by the X-
rays. This is a characteristic feature of all cases of broad
beams and not only restricted to the KV domain. The
deconvolution problem of the cylinder (Figure 11) based
on CT scanning has been previously reported[5].

Figure 12 : Profile of the Hounsfield units (CBCT) of the
phantom cylinder (N = 7, L = 8).

Figure 13 : Hounsfield units of a 2D cylinder based on a
measurement with a detector array.

The factor Cf results from the divergence of the X-rays.
Only in the central ray we have to put Cf =1.. We have to
point out that it is a feature of CT that divergent rays are
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Thus Figure 14 is chosen such that the central ray of
CBCT scanning is identical with the result of CT scanning.
It is obvious that we need significantly more effort in the
CBCT case with regard to the inverse problem, namely
the order L of the deconvolution procedure. On the other
side, this scanning technique provides a complete 3D im-
age. In order to obtain reliable results in the CBCT case,
the calculations had to be performed by accounting for
higher order terms in the LNS procedure. In this com-
munication, we have only considered the inverse problem
of the central ray, but with regard to CBCT the calcula-
tion procedure of the inverse problem requires the modi-
fications according to equation (101).

Further results obtained by LNS in image process-
ing and proton/photon dosimetry

The examples presented in Figures 10-12 may serve as
further tests of inverse calculations via LNS with possible
applications to IMRT/IGRT. A comparison of Figure 15
with Figures 16-17 demonstrates the possible pitfalls of
deconvolutions. Thus it is clear that the convolution of a
triangle provides a �triangle� with rounded corners. How-
ever, the shape of the images obtained via convolution of
non-adjacent boxes might lead to the assumption that the
source function has also the shape of a triangle, which is
apparently not true. This fact clearly demonstrates that �try-
and-error� methods to determine the parameters for the
inverse procedures might lead to artifacts.

The deconvolution procedure by the LNS method
has been applied (L = 20, N = 20) in Figure 16. The
reason for the increased effort results from the long-range
tail of the scatter of the high energy bremsstrahlung.

Further applications with photon beams are shown in
Figures 15-16. Instead of image creation with X-rays (CT,
CBCT) a portal imager (6 MV, bremsstrahlung) has been
applied. Due to the long range of lateral scatter the portal

not used. However, in our case of CBCT application with
rotational symmetry the factor Cf is determined by

.SAD/)SADd(Cf 222
 (101)

In equation (101) SAD refers to the source-axis-distance
and d to distance from the center of the central axis of
the cylinder and its rotation axis.

Figure 14 : Hounsfield units of a 2D cylinder (Figure 14 rep-
resents the result after deconvolutions of Figure 13).

imager does not provide the same height of the central
ray as is can be verified from the previous figures (KV
domain), and the lateral tail has significantly been increased.
The deconvolution procedure has also to be performed
by accounting much more terms of higher order in the
LNS procedure than in the previous cases, and some note-
worthy roundness can be verified in spite of the increased
effort with regard to the order L.

Figure 15 : Convolution of a triangle (solid) with one Gaussian
kernel (dashes) and deconvolution (dots).

TABLE 7 : Convolution/deconvolution parameters in Fig-
ures 15-17.

Figure c0 c1 s0/cm s1/cm L M N 

15 1 - 0.25 - - - 4 

16/dashes 1 - 0.10 - - - 12 

16/dots 0.80 0.20 0.025 0.075 15 15 12 

17/solid 1 - 0.09 - - - 12 

17/dashes 0.80 0.20 0.015 0.050 15 16 12 

Figure 16 : Convolution of three boxes (box length: 0.1 cm,
space length between the boxes: 0.05 cm, height of the source
functions: 1 (middle part) and 0.5 (at both sides)).
Deconvolution: identical with the solid boxes, rounded cor-
ners not verifiable.

Figure 17 : Geometry and box heights: see Figure 16.
Convolutions have been obtained with different parameters.
Deconvolutions are considered as identical with the origin
(solid boxes), if the rounded corners are not verifiable.
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The rms parameters for the application of the LNS
method have been used from a previous publication[7]:

.0.08=c0.26;=c;66.0c 210  (102)

cm.12.334=s cm;4.735=s cm; 0.82=s 21 0 (102a)

The calculation with the previous method (M = 29, N =
20) revealed a superiority of the LNS procedure to pro-
vide faster convergence in the case of long-rang tails.

We have also used a modified configuration of the
cylinder according to Figure 11, namely with air in the
inner part instead of bone-equivalent material, for a fur-
ther measurement with a portal imager (6 MV, bremsstrahl-
ung). Based on the LNS method the measurement data
have been analyzed with parameters of the publication
cited above[7]:

.0.08=c0.26;=c;66.0c 210  (103)

cm.6.16=s cm;1.77=s cm;0.39=s 21 0 (103a)

Figures 18-19 show the adaptation of the measurement
data with the help of the AAA algorithm and the
deconvolution via LNS (boxes with weak roundness at
the corners). In contrast to Figure 18, where we have used
Hounsfield units as the reference scale, we present in Fig-
ure 19 the density (cross-section).

Formulas (104) and (104a) describe a pencil beam model
of 15 MV photons. The deconvolution procedure can be
carried out with both methods presented in this commu-
nication. In order to obtain the pure absorption curve via
measurement data, the influence of diamond detector had
to be removed by an additional deconvolution. The re-
fined measurement data agree with the theoretical model[7],
if the scatter functions s

0
(z), s

1
(z), s

2
(z) are subjected to a

deconvolution with  = 1 mm to account for the finite
size of the detector and its additional scatter influences.
Therefore we have to perform the substitutions:

.s's;s's;s's 22
22

22
11

22
00  (104b)

The deconvolutions have to be carried out using the cor-
rected scatter functions s

0
�, s

1
� and s

2
�.

Figure 18 : Water/air phantom as a modified configuration
of Figure 11 and image produced by 6 MV bremsstrahlung in
a portal imager system (L = 11, N = 10).

Figure 19 : Water/air phantom as a modified configuration
of Figure 11 and image produced by 6 MV bremsstrahlung in
a portal imager system (L = 11, N = 10).

Applications of LNS to photon/proton dosimetry
(Stereotaxy and IMPT)

Processing of very small field-sizes is a pathological

situation in photon and proton dosimetry, since modern
irradiation techniques such as proton beam scanning (with
and without intensity modulation) and Stereotaxy/
RapidArc require the handling of extremely small fields.
In order to reach a comparable situation, we use both for
proton and photon beam 0.48 x 0.48 cm2 field size. With
regard to depth dose/fluence decrease we have to distin-
guish between pure energy absorption and attenuation of
a beam or a simple beamlet (the latter case also accounts
for the influence of scatter). Figure 21 presents both ab-
sorption and attenuation. In particular, very small field-
sizes have a significant influence to attenuation due to scat-
ter; the related curves are rather different. The fluence
decrease curve can be described as follows:

.

)](erf)(erf())(erf)(erf(c

))(erf)(erf())(erf)(erf(c

))(erf)(erf())(erf)(erf(c[
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(104)

zss;zss;zss 202101000  (104a)

TABLE 8 : Parameters of formula (104) and the scatter func-
tions (104a).

a0 a1 ì0[cm-1] ì1[cm-1] c0 c1 c2 s00[cm] s10[cm] s20[cm] 

0.748 0.252 0.01502 0.02204 0.605 0.246 0.149 0.035 0.210 0.525 

Figure 20 : Fluence decrease of 6 MV bremsstrahlung, field-
size: 0.48x0.48 cm2 (solid line: without scatter (pure absorp-
tion), dashed line: with scatter (attenuation)).
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This particular requirement of the previous method
cannot be satisfied in the following case, where we con-
sider a very small proton beam of interest in all scanning
methods and in IMPT with additional intensity modula-
tion. The field-size again amounts to 4.8 x 4.8 mm2, which
we have used due to available data of the HCL.

Thus it turned out by many studies that in proton
therapy scanning methods have a preferred importance,
since broad beams a rather difficult to handle due to the
varying range of targets and range shifts resulting from
heterogeneity of patient tissue. The solid curve of Figure

The determination of S
pp

 and S
sp
 has previously been

carried out[8,37]; we only point out that S
sp
 amounts for

158 MeV protons to 4.4 % of S
pp

. According to require-
ments of the Molière theory we have to represent the
lateral scatter of the S

pp
 protons by two Gaussian kernels,

whereas for the S
sp
 particles we use only one kernel due to

their minor contribution. The parameters of these kernels
at the depths under consideration are given in TABLE 9,
and the overall lateral scatter has to be weighted by S

pp

and S
sp
.

The resulting attenuation curve and the lateral profiles are
presented in Figures 20 and 22, which indicate the role of
detectors and usual photon scatter in very small field-sizes.
It should be mentioned that in IMRT and Stereotaxy we
have very often to deal with photon beams with this or-
der of magnitude. The deconcolution procedures applied
to Figures 20-25 have been performed with L = 12, M =
17 and N = 15 to reach identical results. The superiority
of LNS can be recognized again.

In order to obtain the real absorption profiles ac-
cording to Figure 21 and 22 the deconvolution of three
Gaussian kernels have to be performed. This can be done
with the previous method and with the help of LNS pro-
cedure. The former method is applicable, since the con-
vergence criterion can be satisfied, i.e. s

o
(z) < 20.5·s

1
(z) and

s
o
(z) < 20.5·s

2
(z).

Figure 21 : Transverse profiles at several depths of a pencil
beam (field-size 4.8 x 4.8 mm2) and the deconvolutions to
gain the true absorption curve according to Figure 20.

Figure 22 : Lateral profiles according to Figure 22 (dots), the
solid curves represent measurement data obtained by a dia-
mond detector with  = 1 mm.

23 can be measured, if the proton beam is sufficiently
broad (diameter > 1.5 cm). It can also be theoretically
calculated by neglect of lateral scatter of by Monte-Carlo
methods[8,37,42]. The peculiar behavior of the dashed curve
results from lateral scatter, if the rms-values are of the
order of the beam diameter or larger. Therefore the cal-
culation of the solid curve from the dashed curve is a
principal problem of absolute dosimetry in proton scan-
ning. Figure 23 is based on measurement data and calcula-
tion; it corresponds to Figure 23, which is restricted to
relative data. A proton stopping power curve consists of
two parts, namely the stopping power of proton � elec-
tron interactions (main) contribution S

pp
 (primary protons)

and the release of secondary particles (protons, neutrons,
deuterium, tritium, etc. due to nuclear interactions) S

sp
 (sec-

ondary particles). The amount of secondary depends on
the initial energy.

Figure 23 : Stopping-power of 158 MeV protons (HCL) in-
cluding scatter (dashes) and absorption (solid curve).

TABLE 9 : Parameters for deconvolution of lateral scatter at
z = 6 cm and at the Bragg peak.

 z = 6 cm z =(Bragg peak) = 17.1 cm 

c0 c1 Csp s0[cm] s1[cm] s in[cm] s0[cm] s1[cm] ssp[cm] 

0.91 0.09 1 0.105 0.1605 0.191 0.7443 0.88352 0.91291 

According to TABLE 9 the deconvolution at the
Bragg peak can only be performed by the LNS proce-
dure because s

1
 decreases in this region due to different

ranges of scatter protons (detour factor). The consequence
of this procedure (Figure 23) is that the solid curve of
Figure 22 can be calculated and full agreement is obtained.



JOPA, 1(1) 2012

FP  51

Full Paper

The importance of the deconvolution of very nar-
row proton beams is demonstrated by Figure 23, which
is closely related to Figures 24 and 25. With regard to
scanning beams in proton radiotherapy and IMPT the
deconvolution can provide reliable information on the
necessity of superposition of neighboring proton beamlets
to avoid underdosage in a domain of interest or fluence
modulation in IMPT technique.

Applications of generalized convolutions/
deconvolutions (Fermi-Dirac statistics) to electron
capture

In the following we present results of calculations
for protons, He ions and carbon ions; the initial energy
amounts to 400 MeV/nucleon. This appears to be a
reasonable restriction with regard to therapeutic condi-
tions. Thus Figure 26 shows that at the end of the pro-
jectile track all charged ions nearly behave in the same
manner.

Figure 24 : Depth dose curve of a narrow proton beam
(HCL:158.6 MeV, field width of the impinging beam: 4.8 mm,
measurement data in[36]).

Since the previous deconvolution method with refer-
ence to two Gaussian kernels is not applicable in the Bragg
peak domain, we are not able to present a comparison.
The contribution of primary protons S

pp
 has been sub-

jected to deconvolutions with N = 15 and L = 15 and of
secondary particles S

sp
 with N = 15 (one single Gaussian).

Thus only in the initial plateau z = 6 cm the previous
method would be applicable.

Figure 25 : Transverse profiles of the proton scanning
beam, field-size: 4.8 x 4.8 mm2 including later scatter (dots)
and after deconvolution (solid curves) related to Figures
23and 24.

The following Figure 27 provides a more detailed
behavior in the low energy domain. The residual energy
per nucleon amounts to 10 MeV or smaller.

The succeeding Figure 28 presents the decrease of
the actual charge of carbon ions in dependence of the
initial energy E

0
/nucleon. Thus we can conclude that for

residual energies E < 50 MeV/nucleon the behavior of
the carbon ions does not depend on the initial energy E

0
.

Figure 26 : Actual charge of protons, Helium and Carbon
ions in dependence of the residual energy /MeV/nucleon).

Figure 27 : Section of the above figure for E  10 MeV.

Figure 28 : Effective charge q(E) of carbon ions in depen-
dence of the initial energy for the cases E

0
 = 200, 300 and 400

MeV/nucleon.

With regard to the therapeutic efficacy the behavior
of the LET in the environment of the Bragg peak is very
significant. For a comparison, we first regard a previous
result[61,64,65] referring to the LET of protons. According
to Figure 28 the stopping power of protons at the end
track depends significantly on the initial energy E

0
 and on

the beam-line (energy spectrum at the impinging plane).
The electron capture of the proton at the end track is
ignored. However, the previous Figure 28 clearly shows
that with regard to protons the electron capture only be-
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comes more and more significant, when the actual proton
energy is smaller than E = 2 MeV. The electron capture
of protons at the end track would make the LET of
protons zero independent of the initial energy.

DISCUSSION

The LNS-procedure is applicable with regard to the
inverse problem of linear combination of Gaussian con-
volutions. The application of the Fermi-Dirac statistics (in-
stead of Boltzmann) can be handled with linear combina-
tions of shifted Gaussian convolution kernels. Thus de-
sired back calculations can also be carried out with the
LNS-procedure, e.g. the calculation of q2(E) of measured
Bragg curves of heavy carbons.

Figure 29 : Stopping power of 400 MeV carbon ions based on
the csda-approach.

The succeeding Figure 29 presents E(z) and S(z) =
dE(z)/dz of protons and S(z) of carbon ions with taking
account for electron capture. The initial proton energy
amounts to 270 MeV, whereas the initial carbon ion en-
ergy is 400 MeV/nucleon. Most significant is the height
of the Bragg peak, which is resulting from the electron
capture only a factor 1.7 higher than that of protons. In
both cases the csda approach is assumed. Since protons
are much more influenced by energy straggling and scat-
ter, their peak height are reduced again, whereas for car-
bon ions scatter and energy straggling do not play a very
significant role due to the mass factor 12.

Figure 30 : LET for mono-energetic protons (dots) and over-
all stopping power S(z) of carbon ions 400 MeV/nucleon.

A rigorous consideration of the LET of carbon ions
is given the following Figure 31. It makes only sense to
consider the total energy of 4800 MeV of the carbon
ions. Due to this order of magnitude E(z) of the carbon
ion has not been presented in Figure 30. Energy strag-
gling and scatter have been ignored in Figure 31, which is
justified for heavy carbons. On the other side, this figure
makes also apparent the well-known disadvantage of car-
bon ions, namely the enormous amount of energy of
carbon ions in order to reach an acceptable dose distribu-
tion in the domain of the target, where a SOBP is re-
quired. With the help of GEANT4 a real depth dose curve
(HIMAC, 290 MeV/nucleon[51,52]) has been determined.

The role of GEANT4 was only to account for the nuclear
reactions, which are based in this Monte-Carlo code on
an evaporation model. The electronic stopping power S(z)
has been determined by the tools worked out in this com-
munication, the electron capture effect has been accounted
for. Further parameters for a calculation of S(z) have been
used based on the proton calculation model[6,62] by ap-
propriate modifications. The Gaussian convolution ker-
nels for energy straggling and lateral scatter have been
rescaled according to the corresponding mass properties.

Figure 31 : LET of carbon ions (400 MeV/nucleon).

With regard to the decrease of fluence of primary
carbon ions we have derived some modifications of the
corresponding decrease curves for protons. However, it
appears not to be appropriate to go into further details. A
further aspect is the use of the code GEANT4. Since this
Monte-Carlo code represents an open programming pack-
age, some suitable additional reaction channels have been
introduced.

Figure 32 : Measurement (HIMAC) and theoretical calcula-
tion of the Bragg curve of carbon ions (290 MeV/nucleon.
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LNS procedure

The main purpose of this presentation was a com-
parison between two different ways with respect to
deconvolutions of linear combinations of Gaussian con-
volution kernels. As already mentioned the previous study[5]

is only applicable within a more rigorous restriction with
regard to the rms-values of the kernels: s

1
 > s

0
·20.5, s

2
 >

s
0
·20.5 (s

1
  s

2
). The IFIE2 method together with the LNS

solution procedure developed in this study only requires
the condition: s

1
 > s

0
, s

2
 > s

0
 (s

1
  s

2
). If the previous pro-

cedure is applicable, then there is no principal difference
to the present one with regard to accuracy and calculation
speed. However, the IFIE2 method should be preferred
due to its increased ability of possible applications. This is
particularly true with regard to those inverse problems,
where the rms-values do not remain constant, but can be
functions of the space coordinates according to equations
(100, 101), and the satisfaction of the restrictions of the
previous method cannot be predicted. This fact is true for
deconvolution problems of images obtained by CBCT
and transverse profiles of proton Bragg curves. In par-
ticular, the inverse problem of 3D images resulting from
a 360o rotation of a radiation source and the related de-
tectors can be significantly simplified by a 3D voxel inte-
gration. An alternative way would be the deconvolution
of all beamlets starting at the beam entrance and ending at
the detector array. However, such a procedure consumes
a lot of computation time and, by that, it is cumbersome
and should be avoided. The convolution/deconvolution
of boxes according to Figures 9-18 provide a clear indi-
cation, that the presented method shows an advantage in
those cases, where discontinuities exist. The classical way is
the Fourier transform together with Wiener Filters, which
can lead to awkward problems at jumps of the density.

Electron capture of charged particles described by
generalized convolution kernels

A further purpose of this communication was the
derivation of a systematic theory of electron capture of
charged particles and the role for the LET. There are purely
empirical trials to include charge capture in Monte-Carlo
codes. However, it appears that a profound basis for the
calculation of q2(E), E(z), S(z) and R

csda
(E

0
) depending

besides the initial energy E
0
 also on the nuclear mass num-

ber N is required to account for further influences of
Bragg curves such as the density of the medium and its
nuclear mass/charge A

N
 and Z. The unmodified use of

BBE leads to wrong results and the Barkas correction,
which does not affect the factor q2 of BBE, only works
for protons or antiprotons, whereas for projectile par-
ticles like He or carbon ions this correction cannot be con-
sidered as small. The presented theory includes the Barkas

effect without any correction model.

CONCLUSIONS

The property of scatter functions to account for their
2D or 3D dependence; this fact simplifies to determine
the origin images by a formal way, i.e. the removal of the
scatter via a calculation procedure. Scatter processes rep-
resent an inevitable property of imaging and radiation
dosimetry. Besides these aspects of the inverse problem,
we mention the determination of the fluence in IMRT/
IMPT and refer to specific publications, where the inverse
problem of Gaussian convolution plays a significant
role[23,24] and electron capture along the track of a charged
particle. The discussed model cases of adjacent and non-
adjacent boxes may become a significant basis for these
situations. The preceding sections show that the applica-
tion of the LNS method provides an attractive alternative
way to solve the inverse problem (deconvolutions) of the
determination of the origin image (source functions), which
have been blurred by scatter of high energy photons (KV-
and MV-domain). The method can be best demonstrated
by model cases (phantoms). In particular, we are able to
show that with regard to inverse calculations one has to
be very careful in order to avoid artifacts produced by im-
proper scatter parameters. We particular point out the prob-
lem of noise produced by certain types of detectors, which
may lead to difficult decisions, whether the origin function
contains real peaks or result from fluctuations of detector
properties. As already pointed out the problem of noise is
a typical problem in the low energy/dose domain. The
deconvolution via LNS procedure acquires a particular
meaning in the determination of absolute doses (monitor
units/Gy) in scanning methods and IMPT of proton ra-
diotherapy. Without profound knowledge of these param-
eters and further empirical experience in their handling it
appears impossible to obtain reliable results of complex
problems, which are confronted in CT/CBCT imaging. In
order to restrict the scope of this study we have been un-
able to account for NMR or positron emission tomogra-
phy (PET) image processing, although the latter two disci-
plines have become a very important tool in many other
domains of medicine, which are rather different from radi-
ology and radiotherapy, e.g. neurology, surgery and mo-
lecular image processing in pharmacology.
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