
Controlling the element excitations of the smart antenna arrays using
genetic algorithms

INTRODUCTION

Mobile and wireless communication systems are
becoming increasingly more complex in an effort to
cope with the growing demand for more supporting
peak data rates, coverage requirements, and capac-
ity objectives, as well as exciting new applications
such as wireless multimedia and anywhere-anytime
mobile Internet access. Although new access tech-
nologies such as code division multiple access
(CDMA) are promise to meet these requirements,
this is often achievable only under ideal channel
conditions[1]. Smart antennas have great potential in
overcoming the impairments caused by the channel
in real systems. Its radiation pattern is controlled
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via adaptive algorithms based upon certain criteria.
These criteria could be maximizing the signal-to-
interference ratio (SIR), or minimizing the total out-
put power. Since the output power consists of both
the desired signal and interferences, some constraints
are needed to insure that the output contains mini-
mal contributions due to noise and interference sig-
nals arriving from directions other than the desired
signal direction[2]. However, adaptive algorithms
such as least mean square (LMS), which is widely
used in practical due to its simplicity, depends on
steepest descent (gradient) and other known signal
properties in order to provide feedback to control
the excitation coefficients (weights) of antenna ele-
ments. These algorithms are quite sensitive to the
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ABSTRACT

Traditionally, the excitation coefficients of elements in smart antenna has
been determined and controlled by using least mean square (LMS) algo-
rithm. It is well-known that the LMS performs poorly in very noisy environ-
ment such as in a mobile communication systems. In this paper, a Genetic
Algorithm (GA) is utilized for optimizing the excitation coefficients of smart
antenna. The performance of the smart antenna based on GA has been
evaluated and has been compared with its LMS based counter part. Simula-
tion results showed that the GA has nearly optimal interference cancella-
tion. Other advantages of the GA is its simplicity and fast convergence
provided that the parameters are appropriately chosen, which makes it a
practical algorithm for determining the excitation coefficients of smart an-
tenna.  2016 Trade Science Inc. - INDIA
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starting values of the amplitude weights and may
quickly fall into a local minimum because their theo-
retical development is based on finding the mini-
mum of a bowl-shaped objective function[3]. More-
over, the convergence of these algorithms is de-
pended upon the eignvalue spread such that larger
spreads require longer convergence rates. In addi-
tion, the performance of the conventional smart an-
tenna based LMS algorithm is known to degrade sub-
stantially under high noise condition[4]. This undes-
ired behavior results in a reduction of the array out-
put signal-to-interference-plus-noise ratio (SINR).
Furthermore, the radiation pattern of the smart an-
tenna based LMS algorithm can present irregular and
unacceptable high sidelobes, which further reduce
its performance in the presence of unexpected inter-
ferences.

In this paper, a GA is used for updating the exci-
tation coefficients of an array. The advantageous of
the GA such as fast convergence provided that the
GA parameters are appropriately chosen[5,6], global
optimization, and independently on the eignvalue
spread makes it a practical algorithm for determin-
ing the excitation coefficients of smart antenna.

Controlling the excitation cofficients by LMS

Figure 1 shows a block diagram of an array an-
tenna controlled by LMS algorithm. The output of
such array which consists of N antennas at a time
sample k is given by
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where I is the number of interference signals.

Here, )(ks and )(ki j are the signal and interference
symbol samples. The signal and interference direc-
tions of arrival are s and Ijj ,...,1,  , respectively,,

with corresponding steering vectors )( sa and )( ja .

The error signal )(k , as indicated in Figure 1,
is

)()()()( kkkdk xwH
 (3)

where )(kd is the desired output at sample. Minimiz-
ing the mean square error of (3) and by taking the
instantaneous estimates of correlation matrix of the
received signal, the LMS solution for excitation co-
efficients is given by[3]

)()()()1( kkkk H xww  (4)

where  is the step size parameter. Choosing the
excitation coefficients to minimize output power can
cause cancellation of the desired signal, since it also
contributes to total output power. The desired sig-
nal cancellation can be overcome through the appli-
cation of linear constraints to the excitation coeffi-
cient vector. A linearly constrained minimum vari-
ance based LMS algorithm performs the minimiza-
tion of the output signal�s variance with respect to
unit gain constraint. The cost function of the linearly
constrained minimum variance can be formulated as

1  subject to �min )a(wwRw s
H1-

xx
H

w

 (5)

where xxR� represents the covariance matrix of the re-

ceived signal. The LMS algorithm is canonical adap-
tive signal processing algorithm. It is based on the
steepest descent algorithm, which is easy to imple-
ment but can get stuck in a local minimum. In other
words it can not find the optimal values for excita-
tion coefficients. In the following section, a GA-
based smart antenna is developed to overcome theseFigure 1 : Smart antenna using LMS
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limitations (stuck in a local minimum, not optimality
of the excitation coefficients, and desired signal at-
tenuation).

CONTROLLING THE EXCITATION
COFFICIENTS BY GA

The excitation coefficients of the smart antenna
controlled by a GA are shown in Figure 2.

The GA performs the adaptation by manipulat-
ing the excitation coefficients vector of the cost func-
tion until the total output power is minimized. In this
case, the cost function is a linear array with vari-
able amplitude weights. Controlling the weights
modifies the main beam peak and nulls. Since the
GA reduces the total output power of the smart an-
tenna, constraints are used to prevent desired signal
attenuation in the main beam. In this paper, the con-
straints take the form of using only a few of the edge
elements of the array. Because only few of the edge
elements are adaptive, the main beam receives lim-
ited perturbation. This idea was first used in[7]. As
an example, consider an array of 20 elements that
are spaced 5.0 apart. Three edge elements on both
ends of the array have continues variable amplitude
settings. A continues variable GA is used to perform
the adaptation. The array is assumed to start with a
uniform amplitude distribution.

The GA uses the following steps for determin-
ing the excitation coefficients of smart antenna ele-
ments:

An initial population of chromosomes is ran-
domly generated. By this way, the first generation of

chromosome is created. The weights of those three
edge elements is described by a chromosome, i.e.
each chromosome contains three variables (the am-
plitude weights of the array are assumed symmet-
ric).

The weights of those edge elements are exam-
ined and the output power is measured. In this way,
a fitness (cost) value is assigned to each chromo-
some in the population in order to expressing how
well the chromosome meets requirements to the op-
timized system.

Members of the population with high costs are
discarded and a new population of chromosome (off-
spring) is generated by selecting the best existing
chromosomes (parents). The parents are combined
by crossover and mutation to produce offspring. The
offspring replace the discarded chromosomes. This
step is iterated K times. This means thatgenerations
of chromosome are created in order to find as good
chromosome as possible.

The result of the genetic optimization is obtained
as the best chromosome at the K iteration. The re-
sulting adapted amplitude weights are given by

].1685.08188.00949.01111111
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GA is described by the size of population, by
number of generation and by mutation probability.
With regard to convergence rate, it is worth to men-
tion that the GA with small population size and high
mutation rates can find a good solutions fast[8,9].

SIMULATION RESULTS

To evaluate the performance of the GA-based
smart antenna, some computer simulations have been
carried out in various scenarios. In the following,
we assume a uniform linear array with 20 elements
and half-wavelength element spacing. The desired
signal with SNR=10dB is assumed to impinge on

the array from the direction o
s 0 . Two interferers

are assumed to impinge on the array from the

directions o201  and o202  , both with interfer-

ence-to-noise ratio (INR) equal to 30dB. The
noise, )(kn , is spatially and temporally white and it
has a complex Gaussian zero mean distribution with

Figure 2 : Smart antenna using GA
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variance 12
n . In our first example, we study the

convergence rate of the smart antenna based on GA
compared to smart antenna based on LMS for inter-
ference cancellation. In this case, each run of Monte
Carlo simulation consisting of 500K samples of

)(kx , i.e. 500 iterations or generations are used. The
step size parameter of the LMS algorithm is chosen
as ]�[41 xxRtrace . Under this condition, the conver-
gence of the weight vector in (6) to the optimum
values in the mean-square sense is guaranteed. The
convergence rate of the LMS for interference can-
cellation is governed by the eignvalue spread of xxR� .

While GA parameters include a population size of

8, a 50% selection rate, roulette wheel selection,
uniform crossover, and a 10% mutation rate. The
quiescent and resulting adapted patterns for both
LMS and GA techniques appears in Figure 3(a).
From Figure 3(a), we observe that both patterns have
nulls at the DOAs of the interferences. However,
the deep nulls in the GA pattern come at a cost of
increased average sidelobe levels. When we does
not apply the constraints observe the reduction in
the main beam peaks of both GA and LMS patterns.
The sum of both interference powers as a function
of iteration/generation ( K ) is shown in Figure 3(b).
It is quite clear from Figure 3(b) that the GA quickly
converge to optimal interference cancellation. In the

Figure 3 : Unconstraint scenario: (a) Comparison of patterns, (b) Interference cancellation versus number of it-
eration/ or generation.

Figure 4 : Constraint scenario: (a) Comparison of patterns, (b) Interference cancellation versus number of itera-
tion/ or generation
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Figure 5 : Finite number of iteration scenario:  (a) Comparison of patterns, (b) Output SINR versus number of
iteration/ or generation

second simulation example, we study the impact of
constraints, using (5) with LMS and subset of only 3
edge elements with GA, on the mainbeam reduction
and sidelobe level. Figure 4(a) shows the patterns
of the tested antennas. Convergences of the LMS and
GA algorithms for interference cancellation is shown
in Figure 4(b). Deep nulls are created in the tested
patterns with little perturbation to the mainbeam of
GA pattern. This perturbation depends on the num-
ber of edge elements that used for constraint. In our
simulation we find out that the best result is obtained
when 3 elements on each end of the array are used.
In the next example, we investigate the effect of the
small number of iteration/generation. In this sce-
nario, the smart antenna based on GA demonstrates

an appropriate operation under this situation. On the
other hand, as illustrated in Figure 5(a), the pattern
of the smart antenna based on LMS allocates a deep
null for the desired signal since it is interpreted as
an interference signal. This inadequate operation of
the smart antenna based on LMS is highly depends
on the iteration number (). In Figure 5(b) we show
the output SINR of the antennas tested versus the
iteration number . It is clearly demonstrate that the
smart antenna based on GA shows better capabili-
ties against the effect of low number of iteration.
The smart antenna based on LMS requires a large
number of. However, the smart antenna based on GA
works well even whenis as small asgenerations. It
is worth mentioning that in all previous examples
only two interferences were considered. In our last
example, we simulate multiple interference signals
impinging into the array from DOAs

]80,70,60,48,33,40,14,8,20,20[ oooooooooo
j  . Accord-

ing to our simulation result, the operation of the smart
antenna based on GA depends on the number of sub-
set elements that used for constraints, and on the num-
ber of available degrees of freedom to perform the
nulling. For instance, Figure 6 shows that the smart
antenna based on GA breaks down when more than
three interference signals impinges into the array.
With three subset elements and for less than three
strong interferences, we have enough adaptive null-
ing to reject the interferences. When more interfer-
ences are included )3( I , the number of subset ele-

Figure 6 : Output SINR versus number of interferences
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ments must be increased. In this case, a trade-off
between the mainbeam perturbation and the number
of subset elements should be carefully taken into con-
sideration. Finally, it can be seen from Figure 6 that
the operation of the smart antenna based on LMS is
unsatisfactory even at small number of interference
signals.

CONCLUSION

For the conventional smart antenna based on
LMS, a low number of iteration results in adapted
antenna patterns with high sidelobes and distorted
mainbeams. The smart antenna based on GA have
been proposed as an alternative to the smart antenna
based on LMS. The design of the corresponding GA
was highlighted and its achievable performance was
characterized in terms of both the optimal interfer-
ences cancellation and the SINR. It was demonstrated
that a potentially more attractive SINR is achiev-
able by the proposed smart antenna based on GA.
Moreover, fast convergence to optimal solution is
achieved by using a small population size and high
mutation rate.
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