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ABSTRACT

Traditionally, the excitation coefficients of elements in smart antenna has
been determined and controlled by using least mean square (LMS) algo-
rithm. Itiswell-known that the LM S performs poorly in very noisy environ-
ment such as in a mobile communication systems. In this paper, a Genetic
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Algorithm (GA) isutilized for optimizing the excitation coefficients of smart
antenna. The performance of the smart antenna based on GA has been
evaluated and has been compared with its LM Sbased counter part. Simula-
tion results showed that the GA has nearly optimal interference cancella-
tion. Other advantages of the GA is its simplicity and fast convergence
provided that the parameters are appropriately chosen, which makes it a
practical algorithm for determining the excitation coefficients of smart an-

tenna. © 2016 Trade Sciencelnc. - INDIA

INTRODUCTION

M obile and wirelesscommunication systemsare
becoming increasingly more complex inan effort to
cope with the growing demand for more supporting
peak data rates, coverage requirements, and capac-
ity objectives, aswell as exciting new applications
such aswirel ess multimediaand anywhere-anytime
mobile Internet access. Although new access tech-
nologies such as code division multiple access
(CDMA) are promise to meet these requirements,
this is often achievable only under ideal channel
conditiong¥. Smart antennas have great potential in
overcoming theimpairments caused by the channel
in real systems. Its radiation pattern is controlled

viaadaptive algorithms based upon certain criteria.
These criteria could be maximizing the signal-to-
interferenceratio (SIR), or minimizing thetotal out-
put power. Since the output power consists of both
thedesired signal and interferences, some constraints
are needed to insure that the output contains mini-
mal contributions dueto noise and interference sig-
nals arriving from directions other than the desired
signal direction?. However, adaptive algorithms
such as least mean square (LMS), which iswidely
used in practical due to its simplicity, depends on
steepest descent (gradient) and other known signal
properties in order to provide feedback to control
the excitation coefficients (weights) of antennaele-
ments. These algorithms are quite sensitive to the
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starting values of the amplitude weights and may
quickly fall into alocal minimum becausetheir theo-
retical development is based on finding the mini-
mum of a bowl-shaped objective function®. More-
over, the convergence of these algorithms is de-
pended upon the eignvalue spread such that larger
spreads require longer convergence rates. In addi-
tion, the performance of the conventional smart an-
tennabased LM S algorithm isknown to degrade sub-
stantially under high noise condition®. Thisundes-
ired behavior resultsin areduction of the array out-
put signal-to-interference-plus-noise ratio (SINR).
Furthermore, the radiation pattern of the smart an-
tennabased LM S a gorithm can present irregular and
unacceptable high sidelobes, which further reduce
its performancein the presence of unexpected inter-
ferences.

In this paper, a GA isused for updating the exci-
tation coefficients of an array. The advantageous of
the GA such as fast convergence provided that the
GA parameters are appropriately chosen’>8, global
optimization, and independently on the eignvalue
spread makes it a practical agorithm for determin-
ing the excitation coefficients of smart antenna

Controllingtheexcitation cofficientsby LM'S

Figure 1 shows ablock diagram of an array an-
tenna controlled by LM S agorithm. The output of
such array which consists of N antennas at a time
samplek isgiven by

y(k) = w"x(k) (1
wherekis the time
x, (k)
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[ "y O
@) T

>

Wiy

LMS
A lgorith]

Figure1: Smart antenna using LM 'S

INdex, x(k) =[x, (k) %, (k)...xy_, (k)" IS the complex
vector of received signal,w =[w, w,...w, ,]"iSthe
excitation coefficients vector, T and 4 denotetrans-
pose and conjugate transpose, respectively.
Thereceived signal at time instantis given by

x(K) = s(K) +i(k) + n(k)
= s(k)a(o;) + iij (k)a(8,) +n(k) (2)

where| is the number of interference signals.
Here, s(k) andi; (k) are the signal and interference

symbol samples. The signal and interference direc-
tions of arrival areg,andé,, j =1...,1 , respectively,
with corresponding steering vectorsa(g,) anda(®;) .
The error signal ¢(k) , as indicated in Figure 1,
is
&(k) = d(k) —w" (k)x(k) (3)
whered(k) isthedesired output at sample. Minimiz-
ing the mean square error of (3) and by taking the
Instantaneous estimates of correlation matrix of the
received signal, the LM S solution for excitation co-
efficientsis given by
w(k +1) = w(k) + ue" (k)x(k) (4)
whereu is the step size parameter. Choosing the
excitation coefficientsto minimize output power can
cause cancellation of thedesired signa, sinceit aso
contributes to total output power. The desired sig-
nal cancellation can be overcome through the appli-
cation of linear constraints to the excitation coeffi-
cient vector. A linearly constrained minimum vari-
ance based LM S algorithm performsthe minimiza-
tion of the output signal’s variance with respect to
unit gain constraint. The cost function of thelinearly
constrained minimum variance can beformulated as

min W'Rgw subjectto wa(6,)=1 (s

wherer  representsthe covariance matrix of there-

ceived signa. TheLM Sagorithmiscanonica adap-
tive signal processing algorithm. It is based on the
steepest descent algorithm, which is easy to imple-
ment but can get stuck inalocal minimum. In other
words it can not find the optimal values for excita-
tion coefficients. In the following section, a GA-
based smart antennais devel oped to overcomethese
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Figure 2 : Smart antenna using GA

limitations (stuck in alocal minimum, not optimality
of the excitation coefficients, and desired signal at-
tenuation).

CONTROLLINGTHE EXCITATION
COFFICIENTSBY GA

The excitation coefficients of the smart antenna
controlled by aGA are shown in Figure 2.

The GA performs the adaptation by manipulat-
ing the excitation coefficientsvector of the cost func-
tionuntil thetotal output power isminimized. Inthis
case, the cost function is a linear array with vari-
able amplitude weights. Controlling the weights
modifies the main beam peak and nulls. Since the
GA reducesthetotal output power of the smart an-
tenna, constraints are used to prevent desired signal
attenuation in the main beam. In this paper, the con-
straintstaketheform of using only afew of theedge
elements of the array. Because only few of the edge
elements are adaptive, the main beam receives|im-
ited perturbation. This idea was first used in. As
an example, consider an array of 20 elements that
are spaced 0.5, apart. Three edge elements on both
ends of the array have continuesvariable amplitude
settings. A continues variable GA isused to perform
the adaptation. The array is assumed to start with a
uniform amplitude distribution.

The GA uses the following steps for determin-
ing the excitation coefficients of smart antennaele-
ments.

An initial population of chromosomes is ran-
domly generated. By thisway, thefirst generation of

—=  PFull Peper

chromosome is created. The weights of those three
edge elements is described by a chromosome, i.e.
each chromosome containsthree variables (theam-
plitude weights of the array are assumed symmet-
ric).

The weights of those edge elements are exam-
ined and the output power ismeasured. In thisway,
a fitness (cost) value is assigned to each chromo-
some in the population in order to expressing how
well the chromosome meets requirementsto the op-
timized system.

Members of the population with high costs are
discarded and anew popul ation of chromosome (off-
spring) is generated by selecting the best existing
chromosomes (parents). The parents are combined
by crossover and mutation to produce offspring. The
offspring replace the discarded chromosomes. This
stepisiterated K times. This meansthatgenerations
of chromosome are created in order to find as good
chromosome as possible.

Theresult of the genetic optimization isobtained
as the best chromosome at the K iteration. The re-
sulting adapted amplitude weights are given by

w=[0.1685 0.8188 00949 1111111

1111111 0.0949 0.8188 0.1685].

GA is described by the size of population, by
number of generation and by mutation probability.
With regard to convergencerate, it isworth to men-
tion that the GA with small population sizeand high
mutation rates can find agood sol utions fast®9.

SIMULATION RESULTS

To evaluate the performance of the GA-based
smart antenna, some computer simulationshave been
carried out in various scenarios. In the following,
we assume a uniform linear array with 20 elements
and half-wavelength element spacing. The desired
signal with SNR=10dB is assumed to impinge on
the array from the directiong, = 0°. Two interferers
are assumed to impinge on the array from the
directionsg, = -20°ande, = 20°, both with interfer-
ence-to-noise ratio (INR) equal to 30dB. The
noise, n(k) , is spatially and temporally white and it
has acomplex Gaussian zero mean distribution with



4 Controlling the element excitations of the smart antenna arraysusing genetic algorithms

SIPAIJ, 1(1) 2016

e

Full Paper

variances2 =1. In our first example, we study the
convergence rate of the smart antennabased on GA
compared to smart antennabased on LM Sfor inter-
ference cancellation. In this case, each run of Monte
Carlo simulation consisting of k =500 samples of
x(k) , 1.€. 500 iterations or generationsare used. The
step size parameter of the LM Sagorithm ischosen
asy =1/4tracdR,, ] - Under thiscondition, the conver-
gence of the weight vector in (6) to the optimum
valuesin the mean-square senseis guaranteed. The
convergence rate of the LMS for interference can-
cellationisgoverned by theeignvaluespread of R, .
While GA parameters include a popul ation size of
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8, a 50% selection rate, roulette wheel selection,
uniform crossover, and a 10% mutation rate. The
quiescent and resulting adapted patterns for both
LMS and GA techniques appears in Figure 3(a).
From Figure 3(a), we observethat both patterns have
nulls at the DOAs of the interferences. However,
the deep nulls in the GA pattern come at a cost of
increased average sidelobe levels. When we does
not apply the constraints observe the reduction in
the main beam peaks of both GA and LM S patterns.
The sum of both interference powers as a function
of iteration/generation ( k ) isshownin Figure 3(b).
Itisquiteclear from Figure 3(b) that the GA quickly
convergeto optimal interference cancellation. Inthe
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Figure 3 : Unconstraint scenario: (a) Comparison of patterns, (b) Interference cancellation versus number of it-

eration/ or generation.
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Figure 4 : Constraint scenario: (a) Comparison of patterns, (b) Interference cancellation versus number of itera-

tion/ or generation
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Figure 5 : Finite number of iteration scenario: (a) Comparison of patterns, (b) Output SINR versus number of

iteration/ or generation

k=20 iterationsi/gensrations

T T
mmmm Juiescent

Output SINR (dB)

g,
.'r--n-.-.h.

[T | N TS gy — L T T J.I.Ilu.l_ .u_..._..._!.r-..‘,‘_
|

1

|

1

g 10
Mumber of Interferences

Figure 6 : Output SINR versus number of interferences

second simulation example, we study the impact of
congtraints, using (5) with LM Sand subset of only 3
edge elementswith GA, on the mainbeam reduction
and sidelobe level. Figure 4(a) shows the patterns
of thetested antennas. Convergences of theLMSand
GA dgorithmsfor interference cancellation isshown
in Figure 4(b). Deep nulls are created in the tested
patterns with little perturbation to the mainbeam of
GA pattern. This perturbation depends on the num-
ber of edge elementsthat used for constraint. In our
simulation wefind out that the best result is obtained
when 3 elements on each end of the array are used.
In the next example, weinvestigate the effect of the
small number of iteration/generation. In this sce-
nario, the smart antennabased on GA demonstrates

an appropriate operation under thissituation. Onthe
other hand, asillustrated in Figure 5(a), the pattern
of the smart antennabased on LM Sallocatesadeep
null for the desired signal since it is interpreted as
aninterference signal. Thisinadequate operation of
the smart antenna based on LM S is highly depends
on the iteration number (). In Figure 5(b) we show
the output SINR of the antennas tested versus the
iteration number . It is clearly demonstrate that the
smart antenna based on GA shows better capabili-
ties against the effect of low number of iteration.
The smart antenna based on LMS requires a large
number of. However, the smart antennabased on GA
works well even whenis as small asgenerations. It
is worth mentioning that in al previous examples
only two interferences were considered. In our last
example, we simulate multiple interference signals
impinging into thearray from DOAS

0, =[-20° 20° -8 14° -40° 3% -48° 60°,-70° 80°] . Accord-
ing to our ssimulation result, the operation of the smart
antennabased on GA depends on the number of sub-
set dementsthat used for constraints, and on the num-
ber of available degrees of freedom to perform the
nulling. For instance, Figure 6 showsthat the smart
antennabased on GA breaks down when more than
three interference signals impinges into the array.
With three subset elements and for less than three
strong interferences, we have enough adaptive null-
ing to reject the interferences. When more interfer-
encesareincluded (I > 3), thenumber of subset ele-
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ments must be increased. In this case, a trade-off
between the mai nbeam perturbati on and the number
of subset e ements should be carefully taken into con-
sideration. Finally, it can be seen from Figure 6 that
the operation of the smart antennabased on LMSis
unsatisfactory even at small number of interference
signals.

CONCLUSION

For the conventional smart antenna based on
LMS, alow number of iteration results in adapted
antenna patterns with high sidelobes and distorted
mainbeams. The smart antenna based on GA have
been proposed as an dternative to the smart antenna
based on LMS. The design of the corresponding GA
was highlighted and its achievable performance was
characterized in terms of both the optimal interfer-
encescancdlation and the SINR. It was demonstrated
that a potentially more attractive SINR is achiev-
able by the proposed smart antenna based on GA.
Moreover, fast convergence to optimal solution is
achieved by using asmall population size and high
mutation rate.
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