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ABSTRACT 

The aim of this work is to maintain the interacting liquid level and temperature parameter at a 
desired level. This paper presents decoupling, linearization algorithm (Hirschorn’s algorithm) and Kalman 
filter (KF) and Extended Kalman filter (EKF) for an approximated model of an interacting thermal non-
linear process. The nonlinear interacting system is converted into linear non interacting system using 
decoupling and linearization algorithm. KF and EKF are then designed to estimate the system parameters 
namely level and temperature for a non-interacting linear Multi Input Multi Output (MIMO) system. 
Performance of Extended Kalman filter was found to be better. The obtained estimated error for the plant 
using EKF is less when compared to KF.  
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INTRODUCTION 

The chemical processes hold non-linear dynamic characteristics and the design of 
controller for a non-linear chemical process involves linearizing the process model around 
its steady state operating point and applying the linear control theory. However, decoupling 
and linearization control1 theory is developed under the assumption that the process model is 
known exactly. Therefore, if there is a difference between the real process and the process 
model, application of this theory will give unsatisfactory results. In case, the degree of 
mismatch is there in the chemical process, it is sufficient to add external controllers to 
compensate the mismatch. The state feedback law is then applied to the nonlinear process. 
The resulting control structure is called the Globally Linearizing Control (GLC) structure. 
This methodology is tried here for a MIMO nonlinear system having equal number of inputs 
and outputs. For a linear non interacting MIMO system, KF and EKF are designed from 
control point of view. Recently there have been many researchers aiming to simultaneously 



Int. J. Chem. Sci.: 14(3), 2016 

 

1671

estimate the system parameter and the unknown input. The estimation of parameter is 
important in many engineering applications.  

Level-temperature process setup 

Application to chemical process control - Level and Temperature Cascaded Process 

The non-linear system is defined as    

 uxgxfx )()( +=
•

 …(1) 

 )(xhy =  …(2) 

Where ‘x’ is the state vector of dimension n,  

‘u’ is an input vector of dimension m,  

‘y’ is an output vector of dimension of p,  

f(x) is a smooth function,  

h(x) is a (p,1) vector with a row element hj(x) also a smooth function and g(x) 
is an (n, m) matrix with elements of each column being gj(x).   

The model is of a liquid level and temperature process2 is shown in Figure 1. 

 
Fig. 1: Schematic diagram for the level and temperature control process 

Here (a) U1 is the feed flow rate of the liquid (b) U2 is the heater input (c) Y1 is the 
level sensor output (d) Y2 is the temperature sensor output (e) H is height of the liquid. 

The mathematical equations from the above system is – 
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 y1 = x1 

 y2 = x2 

where 

x1 and x2 are the liquid level and the temperature in the tank, respectively. u1 and u2 
are the feed flow rate to the tank and the heat flow rate from the heater, respectively. The 
feed flow rate and heat flow rate are constrained as 0 < = u1 < = 22 cm3s-1 and 0 < = u2 <              
= 2700 Js-1.k = Constant Coefficient, 1.8. S = Cross sectional area, 191 cm2.x1 = Liquid level 
in cm. x2 = Liquid temperature, °C. To = Temperature of the feed 18°C.Cp = Specific heat, 
= 4.2 J-1K-1.ς = density of the liquid. Simulations were carried out and closed loop response 
was obtained. The performance of the proposed algorithm was evaluated by extensive 
numerical simulations. A standard Runga-Kutta Gill algorithm was used for the numerical 
integration of the set of ordinary differential equations. Before the decoupling techniques has 
been applied, liquid level Y1 depended on U1 (flow rate) and liquid temperature Y2 depended 
on U1 and U2 (heater input). After it had been applied Y1 depends only U1 and Y2 depends 
only U2.  

Development of Hirschorn’s control law 

In order to calculate a control law that induces linear input/ output, the behavior of a 
MIMO system was carried out using Decoupling and Linearization (Hirschor’s) algorithm3. 
It helps to find a differential operator such that, when applied to the outputs. It will provide a 
set of algebraic expressions in ‘x’ and ‘u’ that gives solution to ‘u’.  

The control law allows controlling linear systems without having to impose any 
structural constraints on the closed-loop dynamics of the system4 and5. Therefore, the 
control designer has the flexibility to adjust the parameters ik,β  for fast closed-loop 

dynamics and desirable level of coupling.  

From Kravaris and Soroush, if   

 mk =)*(ς  …(5) 
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1,.........0,tan)( * −== kltconsxFl  

Then the systems eqn. 1 is input/output linearizable. Furthermore, given 
mx1matrice 1,......0,,......0, −== iik rkmiβ  

)(),......(),( )1*()1()0( −−−− kmxmmxmmxm ςςς matrices
1*...,.........1,0 −k

γγγ  and an m x m 

invertible matrix Γ .   

The state feedback law as given in6 is reproduced below: 
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Applying the linearising algorithm, the decoupling and linearization control law 
obtained from the state feedback eqn (3) from2 is given as,   

 ⎥⎦

⎤
⎢⎣

⎡ −+−= 2

2
2

1
111011 2s

kxs
kxVsU δ  …(7) 

 ⎥⎦

⎤
⎢⎣

⎡ −+−⎟
⎠
⎞

⎜
⎝
⎛ −
−= 2

2
2

1
111011p

1

2
2 2s

kxs
kxδVxsςCx

xToU * [ ]22021 xVxsCp δς −  …(8)  

Applying the procedure and data as given in1 and substituting U1 and U2 in the eqn 
(3) and (4) the state equation is obtained in both decoupled and linearised forms. The 
resulting eqns (9) and (10) are in decoupled form.  

 2

2

1101
1

2s
kxζVdt

dx
−−=  ….(9) 

 2202
2 xζVdt

dx −=  …(10) 

The advantage of using Hirschorn’s algorithm is that the control law is less complex. 
In addition to that it also offers more dynamic feed flow rate of liquid U1 and heat input rate 
U2. The simulation results show that Hirschorn’s algorithm has better effect. 
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Implementation of Kalman filter 

Kalman Filter is a recursive predictive filter based on the use of state space 
techniques and recursive algorithms, i.e. only the estimated state from the previous time step 
and the current measurement are needed to compute the estimate of the current state. The 
Kalman filter operates by propagating the mean and covariance of the state through time. 

The notation mn|x
∧

 represents the estimate of the state vector ‘X’ at time n given 
observations till m. 

The state of the filter is represented by two variables  

• ,
k|k

x
∧

a posteriori state estimate at time ‘k’. The given observation is up to 

and including at time ‘k’. 

• ,k|kP a posteriori error covariance matrix which measure the estimated 

accuracy of the state.  

The Kalman filter has two distinct phases, prediction and correction7. The prediction 
phase uses the state estimate from the previous time step to produce an estimate of the state 
at the current time step. This predicted state estimate is also known as the apriori state 
estimate because, it is an estimate of the state at the current time step and it does not include 
observation information from the current time step. In the correction phase, the current 
apriori prediction is combined with current observation information to refine the state 
estimate. This improved estimate is termed the a posteriori state estimate. The block diagram 
in Figure 2 represents the state estimator. 

 
Fig. 2: Block diagram of Kalman filter 
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Typically, the two phases alternate, with the prediction advancing the state until the 
next scheduled observation, and the correction incorporating the observation. However, this 
is not necessary, if an observation is unavailable for some reason, the update may be skipped 
and multiple prediction steps can be performed. Consider a linear time invariant discrete 
system given by the following equations, 

 kWkBu1-kFXkX ++=  …(11) 

 kVkHXkZ +=  …(12) 

where,  F is the state transition matrix, 

 B is the control input matrix, 

 Wk is the process noise with zero mean multivariate normal distribution 
having covariance Qk. 

 H is the observation matrix, 

 Vk is the observation noise which is zero mean Gaussian white noise  having 
covariance Rk. 

 Uk is the control input. 

(a) Prediction (Time update) Equations  

 Predicted state estimate  

 kBu1k|1-kXF1kk|X +−
∧

=−
∧

 …(13) 

 Predicted estimate covariance  

 kQT
kF1k|1-kPF1kk|P +−=−  …(14) 

(b) Correction (Measurement update) Equations 

Innovation or measurement residual  

 1kk|XHkZ
k

y −
∧

−=
∧

 …(15) 
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Innovation (or residual) covariance  

 kRTH1kk|PHkS +−=  …(16) 

Optimal Kalman gain   

 1
kSTH1kk|PkK −

−=  …(17) 

Updated (a posteriori) state estimate  

 kykK
1k|k

Xkk|X
∧

+
−

∧
=

∧  …(18) 

Updated (a posteriori) estimate covariance   

 
1kk|H)PkK(Ikk|P −−=  …(19) 

Extended Kalman filter 

As we know the real systems that are inspiration for all these estimators like KF are 
governed by nonlinear functions. So we always need the advanced version of the filters that 
are basically designed for linear filters. Similarly, it is said that in estimation theory, the 
EKF is the nonlinear version of the Kalman filter8. This nonlinear filter linearizes about the 
current mean and covariance. At one time, the EKF might have been considered the standard 
in the nonlinear state estimation navigation systems and GPS.  

Formulation 

In the EKF, the state transition and observation state space models may not be linear 
functions of the state but might be many non-linear functions. 

Equation 1k1k1kk W),uf(XX −−− +=  

    kkk V)h(XZ +=  

Where Wk and Vk are the process and observation noise. Mean multivariate Gaussian 
noise with covariance Qk and Rk, respectively9. 



Int. J. Chem. Sci.: 14(3), 2016 

 

1677

The functions ‘f’ and ‘h’ use the previous estimate and help in computing the 
predicted state and the predicted state is used to calculate the predicted measurement. 
However, ‘f’ and ‘h’ cannot be used to the covariance directly. So a matrix of partial 
derivatives (the Jacobian) computation is required. At each time step with the help of current 
predicted states the Jacobian is calculated. These matrices are used in the KF equations. This 
process actually linearizes the non-linear function around the present estimate. 

Predict and update equations 

(a) Prediction equations  

Predicted state  

)u,Xf(X 1k1k|1k1k|k −−−

∧

−

∧
=  

Predicted estimate covariance  

1k
T

1k1k|1k1k1k|k QFPFP −−−−−− +=  

Correction Equations 

Innovation or measurement residual  

)Xh(ZY 1k|kkk −

∧∧
−=  

Innovation (or residual) covariance   

k
T
k1k|kkk RHPHS += −  

Optimal kalman gain   
-1
k

T
k1k|kk SHPK −=  

Updated state estimate  

kk1k|kk|k YKXX += −

∧∧
 

Updated estimate covariance   

1k|kkkk|k )PHK(IP −−=  
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Measurement model Hk 

where the state transition and observation matrices are defined to be the following 
Jacobians. 

1k1,k|1-k1k uX|x
fF −−

∧

− ∂
∂=  

1k|kk X|x
hH −

∧

∂
∂=  

Simulation results and discussion 

Utilizing the model given by2, decoupling and linearization algorithm was designed. 
At first the simulation was carried out without decoupling. Figure 4 shows the output 
response of the level and temperature when the set point of the level and temperature were 
changed from 1 to 20 cm and 1 to 10°C, respectively. When sudden disturbance was 
introduced at 200 sec in level, it affected the temperature process due to interaction.   
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Fig. 4: Out put response for the step change in the level without decoupling with                   
PI controllers 

Simulation was carried out after applying Hirchorn’s algorithm with external PI 
controller as shown in Fig. 5. The sudden disturbance introduced at 200 sec in level did not 
affect the temperature process. It can be seen from the Figure 4 that under the influence of 
the controller, ISE is improved. 
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Fig. 5: Output response for the step change in the level with decoupling with                        
PI controllers 

Figure 6 illustrates the level tracking error between plant and Kalman filter. Kalman 
filter was designed for the level process of the state space model. Actual level output of y 
and observer level output ŷ  were obtained directly from simulation model of the plant and 
state estimation error was calculated. Using KF the level error varied between -2 to +2 cm. 
So 10% error occurred as mentioned in Table 1. 
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Fig. 6: Estimated error of the plant and Kalman filter for level parameter 

Fig. 7 illustrates the temperature tracking errors for plant and Kalman filter. Kalman 
filter was designed for the temperature process of the state space model. Actual temperature 
output of y and observer temperature output ŷ  were obtained directly from the simulation 
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model of the plant and state estimation error was calculated. Using KF the temperature error 
varied between -2 to +2ºC. So 15% error occurred as mentioned in Table 1. 
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Fig. 7: Estimated error of the plant and Kalman filter for temperature parameter 

Fig. 8 illustrates the level tracking errors for plant and EKF. EKF was designed for 
the level process of the state space model. Actual level output of y and observer level output 
ŷ  were obtained directly from the simulation model of the plant and state estimation error 
was calculated. Using EKF the level error varied between +0.02 to -0.02 cm. So the filter 
output follows the system output and only 0.1% error occurred.  
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Fig. 8: Estimated error of the plant and EKF for level parameter 
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Fig. 9 illustrates the temperature tracking errors for plant and EKF. EKF was 
designed for the temperature parameter of the state space model. Actual temperature output 
of y and observer temperature output ŷ  were obtained directly from simulation model of the 
plant and the state estimation error was calculated. Using EKF the temperature error varied 
between +0.02 to -0.02 cm. So the filter output follows the system output and only 0.1% 
error occurred. 
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Fig. 9: Estimated error of the plant and EKF for temperature parameter 

Table 1: Comparison of observer performance 

Filter type Level parameter error Temp parameter error 

KF 10% 15% 

EKF 0.1% 0.15% 

CONCLUSION 

The decoupling linearization algorithm was applied to a nonlinear MIMO interacting 
thermal process. The simulation results had shown that even if the processes are non-linear 
and interactive a satisfactory control performance could be obtained. Then Kalmanfilter and 
Extended Kalman filter was designed to estimate the system parameters like level and 
temperature for a non-interacting linear MIMO system. Results of these simulations are 
presented in Table 1. Performance of EKF was found to be better. The obtained outputs for 
EKF give less error when compared to Kalman filter.  
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